
Bundles in Deontic Logic
Bundle+BHK for non-normal modal logic

Yanjing Wang
NASSLLI25, UW
June 26th, 2025

1

Background

Language and Semantics

Proof Systems

Completeness

Extensions

Negated action types

Conclusions and future work

2

Background

Phenomena in natural language as “Icebergs”

3

Phenomena in natural language as “Icebergs”

What shall we do when seeing an iceberg?

Using various logic techniques to fit the “data”...

4

The problem of overfitting

New phenomena by looking at the iceberg from other angles ...

Using logic techniques to fit the new “data”... When is the end?

5

Data Fitting vs. Understanding Why

6

Deontic Logic: ocean with lots of icebergs...

There are many logical puzzles in Standard Deontic Logic (SDL),
deviating from normal modal logic when taking Obligation (O) as a
□ and Permission (P) as a ♢.

Among many others:

• Ross’ paradox: Op → O(p ∨ q) and Pp → P(p ∨ q) are
intuitively invalid, but valid in SDL.

• Free choice: P(p ∨ q) → Pp ∧ Pq is intuitively valid, but
logically invalid in SDL.

We focus on Strong Permission (P), the permissions explicitly
granted rather than simply not being forbidden. Strong permissions
exhibit the property of free choice (FCP).

7

Basic observation and questions

Deontic modalities may be more than what they appear to be!

• Could they also be bundles of a quantifier and a usual modality?
• If so, quantifying over what?

Formulas inside deontic modalities might not be propositions

• Then what are they?
• How can we treat them formally?

8

Further observations regarding quantifiers and bundles

If a hidden quantifier were present, what would it quantify?

• The distinction between action types and tokens, i.e., individual
actions (well-known in the literature)

• Deontic sentences mention only action types
• But the semantics may be about tokens of those types

What could be the bundle for strong permission P?

• It is clearly not ∃x□, but it might be ∀x♢ (Hintikka 1971).
• Pα: each token of action type α is executable on some

deontically ideal successor of the current world.
• If you are permitted to take one day off next week. Each

relevant token (taking Monday off, taking Tuesday off...) should
be executable on some ideal world.

9

Further observations: formalizing action type and token

• Propositional formulas as action types
• They do not have truth values, though can be assigned!
• They can be viewed as collections of action tokens
• We borrow the BHK-like formalism to capture them

10

Brouwer-Heyting-Kolmogorov (BHK) interpretation

BHK proof interpretation of connectives:

(H1) A proof of α ∧ β is given by presenting a proof of α and a proof
of β

(H2) A proof of α ∨ β is given by presenting either a proof of α or a
proof of β

(H3) A proof of α→ β is a construction which transforms any proof
of α into some proof of β

(H4) Absurdity ⊥ has no proof.

¬α is the abbriviation of α→ ⊥.

We can define the relation between action tokens and types
recursively like the above.

11

Further observations: formalizing action type and token

• Propositional formulas as action types
• They do not have truth values, though can be assigned!
• They can be viewed as a collections of action tokens
• We borrow the BHK-like formalism to capture them

Intuitionistic Logic Deontic Logic
prop. formulas type of problems type of actions

token solution/proof individual act
modality know-how permission
bundle ∃□ ∀♢

You will be rewarded if you get the semantics (more or less) right.

12

[Wang&Wang DEON23]: predicting new linguistic phenomena

Valid in our framework
FC P(α ∨ β) ↔ (Pα ∧ Pβ) CD P(α ∧ (β ∨ γ)) ↔ P((α ∧ β) ∨ (α ∧ γ))
CE P(α ∧ β) → (Pα ∧ Pβ) DCl P((α ∨ β) ∧ (α ∨ γ)) → P(α ∨ (β ∧ γ))
Invalid in our framework
CA (Pα ∧ Pβ) → P(α ∧ β) DCr P(α ∨ (β ∧ γ)) → P((α ∨ β) ∧ (α ∨ γ))
RP Pα→ P(α ∨ β) EX Pα→ P(α ∧ α)

DCr is invalid: imagine you are given a coupon that permits you to
take a hamburger or a menu of French fries and salad, this does not
mean you can take a hamburger or fries, and a hamburger or salad.

CA and DCr are valid in Boolean-algebra-based approaches, such as
[3, 4]; CD is invalid in [2]; DCr is valid in the hybrid approach based
on BSML [1]; and CE is not valid in [5].

13

About the “innocent” EX: Pα → P(α ∧ α)

It is not as innocent as it seems. Under free choice and acceptable
distribution, it leads to the unacceptable P(α ∨ β) → P(α ∧ β)!

P(α ∨ β)
=⇒ P((α ∨ β) ∧ (α ∨ β)) (EX)

⇐⇒ P(((α ∨ β) ∧ α) ∨ ((α ∨ β) ∧ β)) (CD)

⇐⇒ P((α ∨ β) ∧ α) ∧ P((α ∨ β) ∧ β) (FC)

⇐⇒ P((α ∧ α) ∨ (α ∧ β)) ∧ P((β ∧ α) ∨ (β ∧ β)) (CD, commutativity)
⇐⇒ P(α ∧ α) ∧ P(α ∧ β) ∧ P(β ∧ α) ∧ P(β ∧ β) (FC)

=⇒ P(α ∧ β) (TAUT)

Let’s get to the details.

14

Language and Semantics

Language AT of action types

Definition (Action Type AT)
Given a countable set of propositional letters P, the language of
action types (AT) is defined as follows (no implication for now):

α := p | (α ∧ α) | (α ∨ α)

where p ∈ P.

We use atomic propositional letters to represent atomic action types
like “drink coffee”, “do homework”, “go to hospital”, etc. Complex
action types like ‘eat cookies and drink coffee”, “do homework or
play computer games” can also be expressed.

15

Language DLSP of Deontic Logic of Strong Permission

Definition (Language DLSP)
Given AT, the language of deontic logic for strong permission
(DLSP) is defined as follows:

φ := ⊥ | p | (φ ∧ φ) | (φ ∨ φ) | (φ→ φ) | ¬φ | Pα

where p ∈ P and α ∈ AT.

We call formulas containing the deontic operator P deontic formulas
and other formulas non-deontic.

16

Action space

Following the BHK-style definition:
Definition (Action Token Space)
Given P and a non-empty set I of atomic action tokens such that
I ∩ {0, 1} = ∅, an action (token) space S is a function based on I
and AT satisfying the following constraints:

1. S(p) ̸= ∅ ⊆ I for any p ∈ P;
2. S(α ∧ β) = S(α)× S(β);
3. S(α ∨ β) = (S(α)× {0}) ∪ (S(β)× {1}).

S is a singleton action space if |S(p)| = 1 for all p ∈ P. People may
treat types and tokens alike for atomic actions.

For example, action tokens for a disjunctive action type (α ∨ β) are
the disjoint union of tokens of α and β. 17

Deontic Model

Definition (Deontic Model)

A deontic model M for DLSP is a tuple (S,W,R,A) where S is an
action space, W is a non-empty set of possible worlds, R ⊆ W × W,
and A is a binary function over AT × W such that for any p ∈ P,
α, β ∈ AT and w ∈ W:

• A(p,w) ⊆ S(p);
• A(α ∧ β,w) = A(α,w)× A(β,w);
• A(α ∨ β,w) = (A(α,w)× {0}) ∪ (A(β,w)× {1});

A pointed model is a pair (M,w) where w is in M. A singleton
deontic model is a model based on a singleton action space.

The function A gives each deontially good world its executed action
tokens. 18

Semantics

Definition (Semantics)

For any φ ∈ DLSP and any pointed deontic model M,w where
M = (S,W,R,A), the satisfaction relation is defined as follows:

M,w ⊭ ⊥
M,w ⊨ p ⇐⇒ A(p,w) ̸= ∅
M,w ⊨ (φ ∧ ψ) ⇐⇒ M,w ⊨ φ and M,w ⊨ ψ
M,w ⊨ (φ ∨ ψ) ⇐⇒ M,w ⊨ φ or M,w ⊨ ψ
M,w ⊨ (φ→ ψ) ⇐⇒ M,w ̸⊨ φ or M,w ⊨ ψ
M,w ⊨ ¬φ ⇐⇒ M,w ̸⊨ φ
M,w ⊨ Pα ⇐⇒ for any a ∈ S(α), there is a v s.t.

wRv and a ∈ A(α, v)

We use ⊨s to denote semantic consequence w.r.t. singleton deontic
models. We say φ is valid (s-valid) if ⊨ φ (⊨s φ). 19

Recall the preview

Valid in our framework
FC P(α ∨ β) ↔ (Pα ∧ Pβ) CD P(α ∧ (β ∨ γ)) ↔ P((α ∧ β) ∨ (α ∧ γ))
CE P(α ∧ β) → (Pα ∧ Pβ) DCl P((α ∨ β) ∧ (α ∨ γ)) → P(α ∨ (β ∧ γ))
Invalid in our framework (without further constraints)
CA (Pα ∧ Pβ) → P(α ∧ β) DCr P(α ∨ (β ∧ γ)) → P((α ∨ β) ∧ (α ∨ γ))
RP Pα→ P(α ∨ β) EX Pα→ P(α ∧ α)

The commutativity and associativity are valid.

P(α ∧ β) ↔ P(β ∧ α) P((α ∧ β) ∧ γ) ↔ P(α ∧ (β ∧ γ))
P(α ∨ β) ↔ P(β ∨ α) P((α ∨ β) ∨ γ) ↔ P(α ∨ (β ∨ γ))

20

Invalidity of DCr: P(α ∨ (β ∧ γ)) → P((α ∨ β) ∧ (α ∨ γ))

The rightmost part below demonstrates the definition of A on u, v,
e.g., A(p, v) = {a} and A(q, u) = {b}.

v p : {a}, r : ∅, q : ∅
S(p) = {a}, S(q) = {b}, S(r) = {c} w

44iiiiiiii

**UUU
UUUU

U

u p : ∅, q : {b}, r : {c}

S(p∨ (q∧ r)) contains (a, 0) and ((b, c), 1) only, which are executable
on v and u respectively, thus P(p ∨ (q ∧ r)) is true on w. However,
the token ((a, 0), (c, 1)) in S((p ∨ q) ∧ (p ∨ r)) is not executable on u
nor v, thus P((p ∨ q) ∧ (p ∨ r)) is false on w. Note that this model is
also a singleton model so DCr is not s-valid.

21

A weaker version of EX over singleton models

The following formula (denoted by EXP) is valid with respect to the
class of singleton deontic models:

⊨s P(p1 ∧ ... ∧ pk) → P(m1 · p1 ∧ ... ∧ mk · pk),

where p1, ...pk ∈ P are pairwise distinct, k,mi ∈ N>0 for any
1 ≤ i ≤ k. Here mi · pi represents the conjunction of mi copies of pi.

22

Proof Systems

Proof Systems (no replacement of equals in P)

System DLSP

Axioms
(TAUT) Propositional Tautologies
(FC) P(α ∨ β) ↔ (Pα ∧ Pβ)
(CE) P(α ∧ β) → (Pα ∧ Pβ)
(COM∧) P(α ∧ β) ↔ P(β ∧ α)
(ASSO∧) P((α ∧ β) ∧ γ) ↔ P(α ∧ (β ∧ γ))
(CD) P(α ∧ (β ∨ γ)) ↔ P((α ∧ β) ∨ (α ∧ γ))
Rules
(MP) Given φ and (φ→ ψ), infer ψ.

System DLSPs

System DLSP with the following axiom
(EXP) P(p1 ∧ ... ∧ pk) → P(m1 · p1 ∧ ... ∧ mk · pk) 23

Normal form

We use DLSP to rewrite a DLSP-formula into a conjunction of
formulas in the shape of P(p1 ∧ ... ∧ pn).

P(p1 ∨ (p2 ∧ ((p3 ∨ p4) ∧ p5))).

The formula is logically equivalent to

1. Pp1 ∧ P(p2 ∧ ((p3 ∨ p4) ∧ p5)) (FC)

2. Pp1 ∧ P((p5 ∧ p2) ∧ (p3 ∨ p4)) (ASSO∧ + COM∧)

3. Pp1 ∧ P(((p5 ∧ p2) ∧ p3) ∨ ((p5 ∧ p2) ∧ p4)) (CD)

4. Pp1 ∧ P((p5 ∧ p2) ∧ p3) ∧ P((p5 ∧ p2) ∧ p4) (FC)

Lemma (Normal Form for Pα)
For any α ∈ AT, Pα is logically equivalent to a formula of the form
(Pβ1 ∧ ... ∧ Pβk) where for each 1 ≤ i ≤ k, βi is in the shape of
P(p1 ∧ ... ∧ pn), which is called a normal form for Pα.

24

Normal form

For any formula φ ∈ DLSP, φ is logically equivalent to a formula in
the following language (denoted by DLSP∗):

ψ ::= ⊥ | p | P(p1 ∧ ... ∧ pn) | ¬ψ | (ψ ∧ ψ) | (ψ ∨ ψ) | (ψ → ψ),

where p, p1, ..., pn ∈ P.

To show the completeness, we will construct for each consistent set
of formulas a model.

25

Completeness

All-distinct action token

Note that due to the validity of ASSO∧ and COM∧, we will treat an
action token of type (p1 ∧ ... ∧ pn) as an n-ary tuple of action tokens
modulo paring.
Definition (All-Distinct Token)

An action token of type (p1 ∧ ... ∧ pn) is all-distinct if tokens of the
same atomic action type in the tuple are pairwise distinct.

We need to first build the action spaces before constructing the
canonical model.

26

Canonical action space

Now let Σ be a maximally DLSP-consistent set of DLSP∗ formulas.
Definition (Canonical Action Space)

Given Σ, we define SC
Σ by distinguishing the two cases of p ∈ P:

• If there is an i ∈ N>0 such that the formula ¬P(i · p) ∈ Σ,
assume that n is the least and let SC

Σ(p) := {p1, p2, ..., pn}, in
which each pi is the propositional letter p superscript with the
numeral i.

• If not, i.e., P(i · p) ∈ Σ for all i ∈ N>0, let SC
Σ(p) := {p1, p2, ...}.

For any composite α ∈ AT, we define SC
Σ(α) recursively as in the

definition of S.

Note that for distinct p, q ∈ P, SC
Σ(p) ∩ SC

Σ(q) = ∅.
27

Existence of all-distinct token

Lemma

For any formula φ of the form P(m1 · pt1 ∧ ... ∧ mk · ptk) where
pti , ptj are pairwise distinct, if φ ∈ Σ, then for any 1 ≤ j ≤ k,
mj < |SC

Σ(ptj)|.

Proof.
Prove by contradiction.

This lemma shows the size of the action space is more than enough
to guarantee the existence of all-distinct action tokens of the type
(m1 · pt1 ∧ ... ∧ mk · ptk) when P(m1 · pt1 ∧ ... ∧ mk · ptk) ∈ Σ.

28

The very idea of canonical model

Based on the lemma and SC
Σ, we will build a pointed deontic model

MC
Σ,w such that the truth lemma holds.

The idea is simple: given a designated world w, build the accessible
worlds according to formulas P(m1 · pt1 ∧ ... ∧ mk · ptk) ∈ Σ.

The subtlety is that we should only realize action tokens that are
necessary to witness the truth of those φ, but no more, for we also
need tokens not realizable to witness ¬P(p1 ∧ ...∧ pn) ∈ Σ. The later
task is doable because we have some spare tokens in SC

Σ based on the
previous Lemma.

29

Functional representation

Fixing an ordering of propositional letters p0, p1, p2, ..., we only need
to consider P(m1 · pt1 ∧ ... ∧ mk · ptk) ∈ Σ such that pti and ptj are
distinct and ordered, e.g., P(3 · p2 ∧ 4 · p6).
Definition
For any φ of the form P(m1 · pt1 ∧ ... ∧ mk · ptk) ∈ Σ such that pti

and ptj are distinct and ordered according to the order of
propositional letters, we define fφ : N → N such that

fφ(i) =
{

mj i = tj for some 1 ≤ j ≤ k;
0 i ̸= tj for any 1 ≤ j ≤ k.

For example, P(3 · p2 ∧ 4 · p6) is represented by the function f such
that f(2) = 3, f(6) = 4 and f(i) = 0 for any i ∈ N \ {2, 6}. We collect
these (countably many) functions in FΣ. 30

Functional representation

Definition
For any f ∈ FΣ, we define Gf := {g : N → P(

∪
p∈P(SC

Σ(p))) |
for any i ∈ N, g(i) ⊆ SC

Σ(pi) and |g(i)| = f(i)}.

Intuitively, each g ∈ Gf assigns a subset of the canonical action space
of each pi whose cardinality is f(i). It follows if f(i) = 0 then g(i) = ∅.
In fact, each g ∈ Gf can be treated as an all-distinct token of the
type in φ. Let GΣ =

∪
{Gf | f ∈ FΣ}.

Proposition
Given a MCS Σ and any distinct f, f′ ∈ FΣ, we have: (1) Gf is not
empty; (2) Gf ∩ Gf′ = ∅.

31

Canonical deontic model

Definition (Canonical Deontic Model)

Given a MCS Σ, we define the model MC
Σ = (SC

Σ,WC,RC,AC)

where:

• WC = {w} ∪ GΣ; RC = {(w, g) | g ∈ GΣ};

• AC(pi, u) =


SC
Σ(pi) if u = w and pi ∈ Σ,

∅ if u = w and pi ̸∈ Σ,

u(i) if u ∈ GΣ;

and AC(α, u) for composite α is defined as in definition of deontic
model.

If g ∈ GΣ then there is a unique f ∈ FΣ s.t. g ∈ Gf. Intuitively, each
g ∈ Gf realizes some all-distinct token of the formula Pα ∈ Σ

corresponding to f, and Gf realize all the necessary tokens.
32

Truth Lemma for DLSP

Lemma (Truth Lemma for DLSP)

Given a MCS Σ. For any φ ∈ Σ,

MC
Σ,w ⊨ φ⇐⇒ φ ∈ Σ.

Proof.
Prove by induction on the structure of φ. We only show the
inductive case when φ = P(p1 ∧ ... ∧ pn). By (COM∧) and (ASSO∧),
φ is logically equivalent to a formula ψ of the form
P(m1 · pt1 ∧ ... ∧ mk · ptk) where pti and ptj are pairwise distinct and
ordered.

33

Truth Lemma for DLSP

Proof.
⇐: Assume that ψ ∈ Σ. We have the corresponding fψ ∈ FΣ. Then
each all-distinct token of type in ψ is represented and thus realized
by some g ∈ Gfψ . And this will guarantee all tokens be realized.
⇒: Assume that ψ ̸∈ Σ. To show MC

Σ,w ̸|= ψ, we need to find
some token in SC

Σ(m1 · pt1 ∧ ... ∧ mk · ptk) cannot be witnessed by
any successor. The crucial point here is that our definition of SC

Σ

and AC together guarantee that some action tokens are indeed left
out at every g ∈ GΣ.

34

Truth Lemma for DLSP

Proof.
Now we consider two cases:

◦ If for any 1 ≤ j ≤ k, mj ≤ |SC
Σ(ptj)|, we take an all-distinct token

x ∈ S(m1 · pt1 ∧ ... ∧ mk · ptk) and show it is not realizable in GΣ,
thus MC

Σ,w ⊭ ψ. Suppose not, so there is a g ∈ GΣ that realizes
x, then there is a unique f such that g ∈ Gf. Since g realizes
all-distinct token x, then we have
f(tj) = |g(tj)| = |AC(ptj , g)| ≥ mj for any 1 ≤ j ≤ k. Due to our
construction, there must be a χ ∈ Σ such that f = fχ.
Therefore, χ must be of the form
P((m′

1 · pt1 ∧ ...∧m′
k · ptk)∧ (m′

k+1 · ptk+1 ∧ ...∧m′
k+l · ptk+l)) ∈ Σ

such that m′
j = f(tj) ≥ mj. By (CE) and (MP), ψ ∈ Σ,

contradicting to the assumption that ψ ̸∈ Σ.

35

Truth Lemma for DLSP

Proof.

◦ If there is 1 ≤ j ≤ k such that mj > |SC
Σ(ptj)|, thus SC

Σ(ptj) is
finite, say |SC

Σ(ptj)| = n. Suppose towards a contradiction that
MC

Σ,w ⊨ ψ. Thus by the validity of CE, MC
Σ,w ⊨ P(n · ptj).

Hence, to realize the token using all the atomic tokens in SC
Σ(ptj),

there must be a g ∈ G such that AC(ptj , g) = g(tj) = SC
Σ(ptj).

Further there must be a unique f such that g ∈ Gf and
f(tj) = |g(tj)| = |SC

Σ(ptj)| = n. Therefore there is a χ ∈ Σ such
that f = fχ. However this means χ must be in the shape of
P(n · ptj ∧ β) ∈ Σ. By (CE), P(n · ptj) ∈ Σ contradicting to the
fact that |SC

Σ(ptj)| = n. Therefore MC
Σ,w ⊭ ψ.

36

Completeness Theorem for DLSP

Based on the truth lemma, by a Lindenbaum-like argument, we can
show:
Theorem (Completeness Theorem for DLSP)

DLSP is strongly complete with respect to the class of all deontic
models.

Note that DLSP is also complete over all serial models, i.e., the
models where every node has a successor.

37

Canonical singleton action space

Now we prove completeness theorem for DLSPs. Let Σ be a
maximally DLSPs-consistent set of DLSP∗ formulas.
Definition (Canonical Singleton Action Space)
Given Σ, we define the canonical singleton action space Ss

Σ such
that Ss

Σ(p) := {p} for any p ∈ P and Ss
Σ(α) is defined recursively as

above for any composite α ∈ AT.

To define the canonical singleton deontic model
Ms

Σ = (Ss
Σ,Ws,Rs,As), still fixing an ordering of propositional letters

in advance, we essentially apply the same method as before.

38

Canonical singleton deontic model

However, our definition will be simplified here. Since
P(m1 · pt1 ∧ ...∧mk · ptk) is logically equivalent to P(pt1 ∧ ...∧ ptk) by
extra validities (EXP) in DLSPs, we only consider formulas φ of the
latter form in Σ and define fφ,Gfφ as before. So, for any i ∈ N, if
i = tj, then fφ(i) = 1, and otherwise fφ(i) = 0. And by this feature of
fφ and Ss

Σ as singleton action space, there is indeed a unique g ∈ Gfφ
such that g(i) = {ptj} if i = tj and g(i) = ∅ otherwise. We collect all
such g in G′

Σ.

39

Canonical singleton deontic model

Definition (Canonical Singleton Deontic Model)
Given Σ, we define the singleton deontic model
Ms

Σ = (Ss
Σ,Ws,Rs,As) where:

• Ws = {v} ∪ G′
Σ; Rs = {(v, g) | g ∈ G′

Σ};

• As(pi, u) =


Ss
Σ(pi) if u = v and pi ∈ Σ,

∅ if u = v and pi ̸∈ Σ,

u(i) if u ∈ G′
Σ;

and As(α, u) for composite α is defined as in Definition of deontic
model.

40

Completeness theorem for DLSPs

Lemma (Truth Lemma for DLSPs)
Let Σ be a maximally DLSPs-consistent set of DLSP∗ formulas.
For any φ ∈ Σ,

Ms
Σ, v ⊨s φ⇐⇒ φ ∈ Σ.

Theorem (Completeness Theorem for DLSPs)
DLSPs is strongly complete with respect to the class of all singleton
deontic models.

41

Extensions

Higher-order permission

Giving a permission itself can also be an action type!

Then we can express PPp, ¬P(p ∨ Pq), PPp → Pp,Pp ∧ ¬PPp . . .

We can give the interpretation for Pα as a type.

• S(Pα) = {cα}.

• A(Pα,w) =
{

{cα} w ⊨ Pα
∅ otherwise

The system DLSP with the following rule is sound and complete:

Given ⊢
∧

Pα→
∧

Pβ, infer ⊢ χ→ χ[
∧

Pβ/
∧

Pα].

With an extra axiom PPα→ Pα, the logic is complete over
transitive frames.

42

Simultaneous conjunction

In DLSP, (CE) : P(α ∧ β) → (Pα ∧ Pβ) is valid. On the other hand,
it also seems controversial, e.g. [2]:

Flight safety: in case of emergency, you are permitted to wear the
parachute and jump out of the plane; but you are not permitted to
jump directly.

• Here, the conjunctive action is simultaneous in the sense that
both conjuncts need to be uniformly executed by one and the
same token.

• For example, sometimes you are required to take different
medicines together to guarantee they all work.

• We can express such simultaneous action types by alternatively
interpreting conjunction as intersection rather than product.

43

Simultaneous action space and model

Given P, we still work in language ATP and DLSPP.
Definition (Simultaneous Action Token Space)
Given a non-empty set I of atomic action tokens, a simultaneous
action (token) space S is a function with domain ATP such that:

1. S(p) ̸= ∅ ⊆ I for any p ∈ P;
2. S(α ∨ β) = S(α) ∪ S(β) and S(α ∧ β) = S(α) ∩ S(β).

Definition (Simultaneous Deontic Model)

A simultaneous deontic model M is a tuple (S,W,R,A) where S is
a simultaneous action space, W,R are as before, A matches S and
satisfies coinstantiation that for any α, β ∈ AT and w ∈ W,

if x ∈ S(α) ∩ S(β), then x ∈ A(α,w) ⇐⇒ x ∈ A(β,w).
44

System DLSPsc and completeness

Axioms
(TAUT) Propositional Tautologies
(FC) P(α ∨ β) ↔ (Pα ∧ Pβ)
(AB) P(α ∧ α) → Pα
(CI) Pα→ P(α ∧ β)
(COM∧) P(α ∧ β) ↔ P(β ∧ α)
(ASSO∧) P((α ∧ β) ∧ γ) ↔ P(α ∧ (β ∧ γ))
(CD) P(α ∧ (β ∨ γ)) ↔ P((α ∧ β) ∨ (α ∧ γ))
Rules
(MP) Given φ and (φ→ ψ), infer ψ.

Theorem (Soundness and Completeness Theorem for DLSPsc)

DLSPsc is sound and strongly complete with respect to the class of
all simultaneous deontic models.

45

Negated action types

Two kinds of action negation

Intuitively, we have (at least) two kinds of action negation.

“Not doing α” means

• either α just being not done.
• or, doing something other than α.

In the scope of strong permission, the former one seems more
appropriate:

You are permitted not to do your homework right now,
but you are NOT permitted to play video games.

The permission not to do α allows just that α is not done, and
nothing more.

46

Negated action type [Wang&Wang DEON25]

Now we extend our framework with the not-doing action types.
Definition (Action Type ATP)
Given a countable set P of propositional letters, the language of
action types (ATP) is defined as follows: for p ∈ P,

α ::= p | (α ∧ α) | (α ∨ α) | ¬α.

Definition (Language DLSPP)
Given ATp, the language of deontic logic for strong permission
(DLSPP) is defined as follows: for p ∈ P and α ∈ ATP,

φ ::= ⊥ | p | (φ ∧ φ) | (φ ∨ φ) | ¬φ | Pα.

Intuitively, P¬α says it is permitted not to do α. Fix a P below. 47

Formalizing action negation as not being done

We introduce a unique “negative” token nα for each ¬α and fix
S(¬α) = {nα}: deliberatively not doing α can be viewed as an action.

These tokens are newly added and not in our given set I of “positive”
atomic action tokens that really can be executed.

Rather, each nα just acts as a marker semantically indicating the
corresponding type is not realized (at a world).

Specifically, at world w, nα is executed iff all tokens of α are not
executed, i.e. A(¬α,w) ̸= ∅ ⇐⇒ A(α,w) = ∅. Recall the treatment
of negation in inquisitive logic.

48

Negated action space and deontic model

Definition (Negated Action Space)
Given P, a set I of positive atomic action tokens and a set
N = {nα | α ∈ AT} of negative atomic action tokens such that
I ∩ N = ∅, (I ∪ N) ∩ {0, 1} = ∅, and nα ̸= nβ for distinct
α, β ∈ AT, a negated action (token) space S is a function with
domain AT such that:

• S(p), S(α ∧ β), S(α ∨ β) satisfy the constraints as before;
• S(¬α) = {nα} for any α ∈ AT.

On the model level, we further require that for any α ∈ AT,

A(¬α,w) =
{

{nα} A(α,w) = ∅,
∅ A(α,w) ̸= ∅.

Such a definition characterizes our intuition to the negated action ¬α
only as α being not done. 49

Properties preserved

After extension from AT− to AT, we still have:
Proposition
For any α ∈ AT and pointed deontic model M,w for DLSP,

1. S(α) ̸= ∅;
2. A(α,w) ⊆ S(α);
3. M,w ⊨ α ⇐⇒ A(α,w) ̸= ∅.

Note that S(α) is not empty even for intuitively impossible action
types. For example, S(α ∧ ¬α) = {(a, nα) | a ∈ S(α)} ̸= ∅ for any α.
However, since A(¬α,w) ̸= ∅ ⇐⇒ A(α,w) = ∅, those tokens of
S(α ∧ ¬α) are not executable on any possible world.

50

Negated action types within P

The semantics is defined the same as before. It is easy to check that
formulas from DLSP− are still valid.

Now, let us look closer at the behavior of the negated type within P.
Proposition
For any α ∈ AT and any pointed deontic model M,w,

M,w ⊨ P¬α ⇐⇒ there is a v ∈ W s.t. wRv and A(α, v) = ∅
M,w ⊨ P¬¬α ⇐⇒ there is a v ∈ W s.t. wRv and A(α, v) ̸= ∅.

Intuitively, it is permitted not to do α (P¬α) iff on some deontically
ideal world no token of α is executed. On the other hand, P¬¬α, as
a ♢∃ (or equivalently ∃♢) bundle, is intuitively weaker than P as a
∀♢ bundle. It naturally provides us with a notion of weak permission
Pwα := P¬¬α, which corresponds to the permission as ♢ in SDL. 51

Some validities

Proposition
For any α, β ∈ AT, the following schemata are valid:

Pα→ P¬¬α P¬¬¬α↔ P¬α ¬P(α ∧ ¬α).

Pα→ P¬¬α says that strong permission implies weak permission,
but not the other way around. From a technical point of view, the
behavior of action negation in the scope of P is intuitionistic: though
double negation only holds in one way, triple negation is equivalent to
single negation. For impossible action type (α ∧ ¬α), permission to
do it is never issued.

52

Some invalidities

Proposition
For any α, β ∈ AT, the following schemata are not valid:

P¬¬α→ Pα ¬Pα→ P¬α P¬α→ ¬Pα P(α ∨ ¬α).

Note that on singleton models, P¬¬α→ Pα is valid when α is a
conjunction of literals. Further, the permission to do α is compatible
with the permission not to do it. It means that Pα and P¬α can be
both true thus it is equivalent to P(α ∨ ¬α) by free choice, which is
not a trivial permission at all: you may do any action of α or simply
choose not to do it.

53

De Morgan’s laws in the scope of P

Interestingly, only three of four one-way De Morgan’s laws are valid in
the scope of P, in parallel to the behavior of distribution laws.
Proposition
For any α, β ∈ AT, we have:

1. ⊨ P¬(α ∨ β) ↔ P(¬α ∧ ¬β);
2. ⊨ P¬(α ∧ β) ↔ (P¬α ∨ P¬β); hence, by free choice

⊨ P(¬α ∨ ¬β) → P¬(α ∧ β) and ̸⊨ P¬(α ∧ β) → P(¬α ∨ ¬β).

Invalid P¬(α ∧ β) → P(¬α ∨ ¬β): consider the following case of a
course with student presentations and final essays. Suppose the
students are permitted not to do both. It seems to be consistent with
the additional fact that handing in the essay is compulsory, but
skipping the presentation is fine. This is a case when
P¬(α ∧ β) ∧ ¬P¬α is consistent. 54

Definability of other deontc modalities using P and ¬

With the action negation ¬ at hand, following the usual definitions in
SDL, we define Oα := ¬P¬α and Fα := O¬α. Recall that we have
defined weak permission Pwα := P¬¬α.

Here, O defined as ¬P¬ appears to be the dual of P. However, two
negations in and out of the scope of P are different:

• ¬ outside P is for proposition and classical.
• ¬ inside P is for action type and essentially non-classical.

So, the apparent duality is different from that in SDL and other
similar frameworks where no distinction as such is made.

55

Comparison with SDL

The truth conditions for O, F and Pw are as follows:
Proposition
For any α ∈ AT and any pointed deontic model M,w,

M,w ⊨ Oα ⇐⇒ for any v ∈ W, if wRv then A(α, v) ̸= ∅
M,w ⊨ Fα ⇐⇒ for any v ∈ W, if wRv then A(α, v) = ∅.
M,w ⊨ Pwα ⇐⇒ there is a v ∈ W s.t. wRv and A(α, v) ̸= ∅.

We claim that O as □∃, F as ¬♢∃ and Pw as ♢∃ in our framework
behaves exactly as the (weak) obligation □, prohibition ¬♢ and weak
permission ♢ in SDL, respectively. So, we can define standard
deontic modalites using strong permission P and action negation ¬.
Proposition
⊨ Oα↔ ¬Pw¬α, ⊨ Pwα↔ ¬O¬α, and ⊨ Pwα↔ ¬Fα. 56

Complete system with O,F,P without negated actions

(TAUT) Propositional Tautologies
(FC) P(α ∨ β) ↔ (Pα ∧ Pβ)
(CE) P(α ∧ β) → (Pα ∧ Pβ)
(COM∧) P(α ∧ β) ↔ P(β ∧ α)
(ASSO∧) P((α ∧ β) ∧ γ) ↔ P(α ∧ (β ∧ γ))
(CD) P(α ∧ (β ∨ γ)) ↔ P((α ∧ β) ∨ (α ∧ γ))
(CAO) (Oα ∧ Oβ) → O(α ∧ β)
(IFCF) (Fα ∧ Fβ) → F(α ∨ β)
(OFO) (O(α ∨ β) ∧ Fβ) → Oα
(FOF) (F(α ∧ β) ∧ Oβ) → Fα
(SW) Pα→ ¬Fα
(SE) Oα→ ¬Fα
(MP) Given φ and (φ→ ψ), infer ψ.
(MOO) Given ⊢ α→ β, infer ⊢ Oα→ Oβ.
(IMOF) Given ⊢ α→ β, infer ⊢ Fβ → Fα. 57

Complete system with negated actions over singleton models

On top of the previous system:

System POFL− with the axioms
(PNF) P(pin ∧ ¬γjm) ↔ ¬F(pin ∧ ¬γjm)

(FON) Fα↔ O¬α
(Fbot) F(α ∧ ¬α)

To avoid Ross’s paradox for obligation, we define Osα := Oα ∧ Pα.

P O F Os Pw

∀♢ □∃ ¬♢∃ ∀♢ ∧□∃ ♢∃

Check our DEON25 paper for details.

58

Conclusions and future work

Conclusions

• We formalize strong permission as a ∀x♢ bundle
• The propositional formulas are action types whose tokens are

given by a BHK-style recursive definition
• The resulting logic admits FC and most other good properties, if

not all.
• It also predicts phenomena aligned with our linguistic intuition,

which were not discussed in the literature
• We can add higher-order permission and other connectives.
• Add action negation ¬ as not being done to the framework and

define other standard deontic operators using it and P.
• Axiomatize logics with P, O and F under various classes of serial

deontic models

59

Ongoing work

• Axiomatizing the logic without the single space assumption.
• Adding implications in the scope of modalities
• Adding sequential “and” such that the tokens are sequences
• Try to solve more puzzles!

60

Aloni, M., Logic and conversation: the case of free choice,
Semantics and Pragmatics 15 (2022), pp. 5–EA.

Bentzen, M. M., Action type deontic logic, Journal of Logic,
Language and Information 23 (2014), pp. 397–414.

Castro, P. F. and P. Kulicki, Deontic logics based on boolean
algebra, in: R. Trypuz, editor, Krister Segerberg on Logic of
Actions, Springer Netherlands, Dordrecht, 2014 p. 85–117.
Trypuz, R. and P. Kulicki, On deontic action logics based on
boolean algebra, Journal of Logic and Computation 25 (2015),
pp. 1241–1260.
van Benthem, J., Minimal deontic logics, Bulletin of the Section
of Logic 8 (1979), pp. 36–42.

60

	Background
	Language and Semantics
	Proof Systems
	Completeness
	Extensions
	Negated action types
	Conclusions and future work

