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We examine four approaches for dealing with the logical omniscience problem and their
potential applicability: the syntactic approach, awareness, algorithmic knowledge, and im-
possible possible worlds. Although in some settings these approaches are equi-expressive
and can capture all epistemic states, in other settings of interest (especially with proba-
bility in the picture), we show that they are not equi-expressive. We then consider the
pragmatics of dealing with logical omniscience—how to choose an approach and construct
an appropriate model.
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1. Introduction

John McCarthy was a pioneer in the use of reasoning about knowledge in AI. His notion of what “any fool” knows, one
of the earliest uses of common knowledge, goes back to roughly 1970; it first appears in a published paper in [21]. It thus
seems particularly appropriate for a paper on logics of knowledge to appear in this special issue of Artificial Intelligence
dedicated to John McCarthy and his work.

Like most authors, McCarthy gave “possible-worlds” style semantics to knowledge. Logics of knowledge based on
possible-worlds semantics have been shown to be useful in many areas of knowledge representation and reasoning, ranging
from security to distributed computing to game theory. In these models, an agent is said to know a fact ϕ if ϕ is true in
all the worlds she considers possible. While reasoning about knowledge with this semantics has proved useful, as is well
known, it suffers from what is known in the literature as the logical omniscience problem: under possible-world semantics,
agents know all tautologies and know the logical consequences of their knowledge.

While logical omniscience is certainly not always an issue, in many applications it is. For example, in the context of
distributed computing, we are interested in polynomial-time algorithms, although in some cases the knowledge needed
to perform optimally may require calculations that cannot be performed in polynomial time (unless P = NP) [26]; in the
context of security, we may want to reason about computationally bounded adversaries who cannot factor a large composite
number, and thus cannot be logically omniscient; in game theory, we may be interested in the impact of computational
resources on solution concepts (for example, what will agents do if computing a Nash equilibrium is difficult).

Not surprisingly, many approaches for dealing with the logical omniscience problem have been suggested (see [10, Chap-
ter 9] and [25]). A far from exhaustive list of approaches includes:

• syntactic approaches [5,24,18], where an agent’s knowledge is represented by a set of formulas (intuitively, the set of
formulas she knows);

• awareness [7], where an agent knows ϕ if she is aware of ϕ and ϕ is true in all the worlds she considers possible;
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• algorithmic knowledge [12] where, roughly speaking, an agent knows ϕ if her knowledge algorithm returns “Yes” on a
query of ϕ; and

• impossible worlds [29], where the agent may consider possible worlds that are logically inconsistent (for example, where
p and ¬p may both be true).

Which approach is best to use, of course, depends on the application. One goal of this paper is to elucidate the aspects
of the application that make a logic more or less appropriate. We start by considering the expressive power of these
approaches. In Section 3, we examine the expressiveness of the approaches for a general epistemic logic. It may seem
that there is not much to say with regard to expressiveness, since it has been shown that all these approaches are equi-
expressive and, indeed, can capture all epistemic states (see [31,10] and Section 2). However, this result holds only if we
allow an agent to consider no worlds possible. As we show, this equivalence no longer holds in contexts where agents must
consider some worlds possible.

This difference in expressive power is particularly relevant once we have probability in the picture. In Section 4, we
examine the logical omniscience problem in the context of an epistemic logic that can talk explicitly about probability, with
formulas of the form K (�(Primen) = 1/3), read “the agent knows that the probability that Primen is true is 1/3”. We show
that in the presence of probabilities, the approaches to dealing with logical omniscience that make sense in this setting are
not equi-expressive.

But expressive power is only part of the story. We consider here (mainly by example) the pragmatics of dealing with
logical omniscience—an issue that has largely been ignored: how to choose an approach and construct an appropriate
model. In Section 5, we examine the four main approaches to logical omniscience, and identify some guiding principles for
choosing an approach to model a situation, based on the source of the lack of logical omniscience in that situation. Coming
up with an appropriate structure can be nontrivial. As a specific contribution, we illustrate a general approach to deriving an
impossible-worlds structure based on an implicit description of the situation, which seems to be appropriate for a number
of situations of interest.

2. The four approaches: a review

We now review the standard possible-worlds approach and the four approaches to dealing with logical omniscience
discussed in the introduction. For ease of exposition we focus on the single-agent propositional case. While in many appli-
cations it is important to consider more than one agent and to allow first-order features (indeed, this is true in some of
our examples), the issues that arise in dealing with multiple agents and first-order features are largely orthogonal to those
involved in dealing with logical omniscience. Thus, we do not discuss these extensions here.

2.1. The standard approach

We define a propositional language L K of knowledge. Starting with a set Φ of primitive propositions, we close off under
conjunction (∧), negation (¬), and the K operator. As usual, we consider ϕ ∨ ψ to be an abbreviation for ¬(¬ϕ ∧ ¬ψ), and
ϕ ⇒ ψ to be an abbreviation for ¬ϕ ∨ ψ . Kϕ will usually be read as “the agent knows ϕ”, but because Kϕ ⇒ ϕ will not
always hold in our models, Kϕ will sometimes have a more natural reading as “the agent believes ϕ”. None of our results
depend on the reading of the operator.

We give semantics to L K formulas using Kripke structures. For simplicity, we focus on approaches that satisfy the K45
axioms (as well as KD45 and S5).1 In this case, a K45 Kripke structure is a triple (W , W ′,π), where W is a nonempty
set of possible worlds (or worlds, for short), W ′ ⊆ W is the set of worlds that the agent considers possible, and π is an
interpretation that associates with each world a truth assignment π(w) to the primitive propositions in Φ . Note that the
agent need not consider every possible world (that is, each world in W ) possible. Then we have

(M, w) |� p iff π(w)(p) = true, where p ∈ Φ .
(M, w) |� ¬ϕ iff (M, w) 
|� ϕ .
(M, w) |� ϕ ∧ ψ iff (M, w) |� ϕ and (M, w) |� ψ .
(M, w) |� Kϕ iff (M, w ′) |� ϕ for all w ′ ∈ W ′ .

This semantics suffers from the logical omniscience problem. In particular, one sound axiom is
(

Kϕ ∧ K (ϕ ⇒ ψ)
) ⇒ Kψ,

which says that an agent’s knowledge is closed under implication. In addition, the knowledge generalization inference rule is
sound:

From ϕ infer Kϕ.

1 We could extend the investigation in this paper to more general structures satisfying weaker axioms, but consider the more standard setting suffices
for the points we want to make. We expect similar results to the ones we obtain here to hold for more general structures, but have not checked the details.
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Thus, agents know all tautologies. As is well known, two other axioms are sound in K45 Kripke structures:

Kϕ ⇒ K Kϕ

and

¬Kϕ ⇒ K¬Kϕ.

These are known respectively as the positive and negative introspection axioms. (These properties characterize K45.)
In the structures we consider, we allow W ′ to be empty, in which case the agent does not consider any worlds possible.

In such structures, Kϕ is true for all ϕ , including false. A KD45 Kripke structure is a K45 Kripke structure (W , W ′,π) where
W ′ 
= ∅. Thus, in a KD45 Kripke structure, the agent always considers at least one world possible. In KD45 Kripke structures,
the axiom

¬K (false)

is sound, which implies that the agent cannot know inconsistent facts. The logic KD45 results when we add this axiom to
K45. S5 Kripke structures are KD45 Kripke structures where W = W ′; that is, the agent considers all worlds in W possible.
In S5 Kripke structures, the axiom

Kϕ ⇒ ϕ,

which says that the agent can know only true facts, is sound. Adding this axiom to the KD45 axioms gives us the logic S5.

2.2. The syntactic approach

The intuition behind the syntactic approach for dealing with logical omniscience is simply to explicitly list, at every pos-
sible world w , the set of formulas that the agent knows at w . A syntactic structure has the form M = (W , W ′,π, C), where
(W , W ′,π) is a K45 Kripke structure and C associates a set of formulas C(w) with every world w ∈ W . The semantics of
primitive propositions, conjunction, and negation is just the same as for Kripke structures. For knowledge, we have

(M, w) |� Kϕ iff ϕ ∈ C(w).

Of course, for syntactic structures, the set of possible worlds plays no role in the semantics of knowledge.

2.3. Awareness

Awareness is based on the intuition that an agent should be aware of a concept before she can know it. The formulas
that an agent is aware of are represented syntactically; we associate with every world w the set A(w) of formulas that
the agent is aware of. For an agent to know a formula ϕ , not only does ϕ have to be true at all the worlds she considers
possible, but she has to be aware of ϕ as well. A K45 awareness structure is a tuple M = (W , W ′,π, A), where (W , W ′,π)

is a K45 Kripke structure and A maps worlds to sets of formulas. We now define

(M, w) |� Kϕ iff (M, w ′) |� ϕ for all w ′ ∈ W ′ and ϕ ∈ A(w).2

We can define KD45 and S5 awareness structures in the obvious way: M = (W , W ′,π, A) is a KD45 awareness structure
when (W , W ′,π) is a KD45 structure, and an S5 awareness structure when (W , W ′,π) is an S5 structure.

2.4. Algorithmic knowledge

In some applications, there is a computational intuition underlying what an agent knows; that is, an agent computes
what she knows using an algorithm. Algorithmic knowledge is one way of formalizing this intuition. An algorithmic knowledge
structure is a tuple M = (W , W ′,π,A), where (W , W ′,π) is a K45 Kripke structure and A is a knowledge algorithm that
returns “Yes”, “No”, or “?” given a formula ϕ .3 Intuitively, A(ϕ) returns “Yes” if the agent can compute that ϕ is true, “No”
if the agent can compute that ϕ is false, and “?” otherwise. In algorithmic knowledge structures,

(M, w) |� Kϕ iff A(ϕ) = “Yes”.

2 In [7], the symbol K is reserved for the standard definition of knowledge; the definition we have just given is denoted as Xϕ , where X stands for
explicit knowledge. A similar remark applies to the algorithmic knowledge approach below. We use K throughout for ease of exposition.

3 In [12], the knowledge algorithm is also given an argument that describes the agent’s local state, which, roughly speaking, captures the relevant
information that the agent has. However, in our single-agent static setting, there is only one local state, so this argument is unneeded.
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As in the syntactic approach, the set of possible worlds plays no role in the semantics of knowledge.
An important class of knowledge algorithms consists of the sound knowledge algorithms. When a sound knowledge

algorithm returns “Yes” to a query ϕ , then the agent knows (in the standard sense) ϕ , and when it returns “No” to a
query ϕ , then the agent does not know (again, in the standard sense) ϕ . Thus, if A is a sound knowledge algorithm, then
A(ϕ) = “Yes” implies (M, w) |� ϕ for all w ∈ W ′ , and A(ϕ) = “No” implies there exists w ∈ W ′ such that (M, w) |� ¬ϕ .
(When A(ϕ) = “?”, nothing is prescribed.)

2.5. Impossible worlds

The impossible-worlds approach relies on relaxing the notion of possible world. Take the special case of logical omni-
science that says that an agent knows all tautologies. This is a consequence of the fact that a tautology must be true at
every possible world. Thus, one way to eliminate this problem is to allow tautologies to be false at some worlds. Clearly,
those worlds do not obey the usual laws of logic—they are impossible possible worlds (or impossible worlds, for short).

A K45 (resp., KD45, S5) impossible-worlds structure is a tuple M = (W , W ′,π, C), where (W , W ′ ∩ W ,π) is a K45 (resp.,
KD45, S5) Kripke structure, W ′ is the set of worlds that the agent considers possible, and C associates with each world in
W ′ − W a set of formulas. W ′ , the set of worlds the agent considers possible, is not required to be a subset of W —the agent
may well include impossible worlds in W ′ . The worlds in W ′ − W are the impossible worlds. We can also consider a class
of impossible-worlds structures intermediate between K45 and KD45 impossible-worlds structures. A KD45− impossible-
worlds structure is a K45 impossible-worlds structure (W , W ′,π, C) where W ′ is nonempty. In a KD45− impossible-worlds
structure, we do not require that W ′ ∩ W be nonempty.

A formula ϕ is true at a world w ∈ W ′ − W if and only if ϕ ∈ C(w); for worlds w ∈ W , the truth assignment is like that
in Kripke structures. Thus,

• if w ∈ W , then (M, w) |� p iff π(w)(p) = true;
• if w ∈ W , then (M, w) |� Kϕ iff (M, w ′) |� ϕ for all w ′ ∈ W ′;
• if w ∈ W ′ − W , then (M, w) |� ϕ iff ϕ ∈ C(w).

We remark that when we speak of validity in impossible-worlds structures, we mean truth at all possible worlds in W in
all impossible-worlds structures M = (W , . . .).

3. Expressive power

There is a sense in which all four approaches are equi-expressive, and can capture all states of knowledge. To make this
precise, define a set Φ ′ of formulas in L K to be propositionally consistent if Φ ′ is a consistent set of formulas of propositional
logic when we treat formulas of the form Kϕ as primitive propositions (a distinct one for each ϕ). Thus, propositional
consistency ignores properties of the knowledge operator. We take for granted here a sound and complete axiomatization
of propositional logic [6], and therefore what we call a propositionally consistent set is also a propositionally satisfiable set.

Theorem 3.1. (See [31,10].) For every finite set F of formulas and every propositionally consistent set G of formulas, there exists
a syntactic structure (resp., K45 awareness structure, KD45− impossible-worlds structure, algorithmic knowledge structure) M =
(W , . . .) and a world w ∈ W such that (M, w) |� Kϕ if and only if ϕ ∈ F , and (M, w) |� ψ for all ψ ∈ G.4

Proof. We review the basic idea of the proof, since it will set the stage for our later results.

• For syntactic structures, let M = ({w},∅,π, C), where C(w) = F and π(w) is such that (M, w) |� ψ for all ψ ∈ G .
(Since G is propositionally consistent, there must be a truth assignment that makes all the formulas in G true; we can
take π(w) to be that truth assignment.)

• For K45 awareness structure, let M = ({w},∅,π, A), where A(w) = F and π(w) makes all the formulas in G true.
• For KD45− impossible-worlds structure, let M = ({w}, {w ′},π, C), where C(w ′) = F and π(w) makes all the formulas

in G true.
• For algorithmic knowledge, let M = ({w},∅,π,A), where A(ϕ) = “Yes” iff ϕ ∈ F and π(w) makes all the formulas in G

true. �
Despite the name, the introspective axioms of K45 are not valid in K45 awareness structures or K45 impossible-worlds

structures. Indeed, it follows from Theorem 3.1 that no axioms of knowledge are valid in these structures. (Take F to
be the empty set.) In fact, we can show that a formula is valid with respect to K45 awareness structures (or KD45 or
KD45− impossible-worlds structures, syntactic structures, algorithmic knowledge structures) if and only if it is a substitution

4 This result extends to infinite sets F of formulas for syntactic structures, K45 awareness structures, and KD45− impossible-worlds structures. For
algorithmic knowledge structures, the result extends to recursive sets F of formulas.
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instance of a propositional tautology, that is, the result of substituting arbitrary formulas in L K for the primitive propositions
in a propositional tautology. To make this precise, let Prop be the axiom

ϕ is a substitution instance of a valid formula of propositional logic (Prop)

and MP be the inference rule

From ϕ ⇒ ψ and ϕ infer ψ . (MP)

The inference rule MP is not needed for our next result, but it will be needed later when we look at axiomatizations for
L K in different structures, so we introduce it here.

Theorem 3.2. {Prop,MP} is a sound and complete axiomatization of L K with respect to K45 awareness structures (resp., K45 and
KD45− impossible-worlds structures, syntactic structures, algorithmic knowledge structures).

Proof. Soundness is straightforward to establish in all cases. For completeness, we show that a consistent formula is sat-
isfiable. Suppose that ϕ is consistent with {Prop,MP}. It suffices to show that ϕ is satisfiable in a K45 awareness (resp.,
K45 and KD45− impossible-worlds structure, syntactic structure, algorithmic knowledge structure). Viewing formulas of the
form Kψ as primitive propositions, ϕ must be propositionally consistent. Thus, there must be a truth assignment v to the
primitive propositions and formulas of the form Kψ that appear in ϕ such that ϕ evaluates to true under this truth assign-
ment. Let F consist of all formulas ψ such that v(Kψ) = true and let G consist of all the propositional formulas ψ such
that v(ψ) = true. Let M be the structure guaranteed to exist by Theorem 3.1. It is easy to see that (M, w) |� ϕ . �

It follows from Theorem 3.2 that a formula is valid with respect to K45 awareness structures (resp., K45 and KD45−
impossible-worlds structures, syntactic structures, algorithmic knowledge structures) if and only if it is a substitution in-
stance of a propositional tautology. Thus, deciding if a formula is valid is co-NP complete, just as it is for propositional
logic.

Theorems 3.1 and 3.2 rely on the fact that we are considering K45 awareness structures and KD45− (or K45) impossible-
worlds structures. (Whether we consider K45, KD45, or S5 is irrelevant in the case of syntactic structures and algorithmic
knowledge structures, since the truth of a formula does not depend on what worlds an agent considers possible.) There are
constraints on what can be known if we consider KD45 and S5 awareness structures and impossible-worlds structures. The
constraints depend on which structures we consider. To make the constraints precise, we need a few definitions. We say a
set of formulas F is downward closed if the following conditions hold:

(a) if ϕ ∧ ψ ∈ F , then both ϕ and ψ are in F ;
(b) if ¬¬ϕ ∈ F , then ϕ ∈ F ;
(c) if ¬(ϕ ∧ ψ) ∈ F , then either ¬ϕ ∈ F or ¬ψ ∈ F (or both); and
(d) if Kϕ ∈ F , then ϕ ∈ F .

We say that F is k-compatible with F ′ if Kψ ∈ F ′ implies that ψ ∈ F .

Proposition 3.3. Suppose that M = (W , W ′, . . .) is a KD45 awareness structure, w ∈ W , and w ′ ∈ W ′ . Let F = {ϕ | (M, w) |� Kϕ}
and let F ′ = {ψ | (M, w ′) |� ψ}. Then F ′ is a propositionally consistent downward-closed set of formulas that contains F .

Proof. Suppose that M = (W , W ′, . . .) is a KD45 awareness structure. Let w , w ′ , F , and F ′ be as in the statement of
the theorem. Clearly F ⊆ F ′ . Since w ′ is a possible world, it is easy to see that F ′ satisfies the first three conditions of
being downward closed. For the last condition, note that if (M, w ′) |� Kψ , then we must have (M, w ′′) |� ψ for all worlds
w ′′ ∈ W ′ , so (M, w ′) |� ψ . Finally, F ′ must be propositionally consistent, since w ′ is a possible world. �
Proposition 3.4. Suppose that M = (W , W ′, . . .) is a KD45 impossible-worlds structure, w ∈ W , and w ′ ∈ W ∩ W ′ . Let F = {ϕ |
(M, w) |� Kϕ} and let F ′ = {ψ | (M, w ′) |� ψ}. Then

(a) F ′ is a propositionally consistent downward-closed set of formulas that contains F ;
(b) F is k-compatible with F ′ .

Proof. The argument for (a) is the same as in the proof of Proposition 3.3, since w ′ ∈ W ∩ W ′ in this case. For (b), to see
that F is k-compatible with F ′ , suppose that Kϕ ∈ F ′ . By the definition of F ′ , this means that (M, w ′) |� Kϕ . It follows
that (M, w ′′) |� ϕ for all ϕ ∈ W ′ . Hence, (M, w) |� Kϕ , so ϕ ∈ F . (Note that this argument does not work for awareness
structures, since we may not have ϕ ∈ A(w), and therefore we cannot necessarily derive (M, w) |� Kϕ .) �

The next result shows that the constraints on F described in Propositions 3.3 and 3.4 are the only constraints on F .
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Theorem 3.5. If F and F ′ are such that F ′ is propositionally consistent downward-closed set of formulas that contains F , then there
exists a KD45 awareness structure M = ({w, w ′}, {w ′},π, A) such that (M, w) |� Kϕ iff ϕ ∈ F and (M, w ′) |� ψ for all ψ ∈ F ′ . If,
in addition, F is k-compatible with F ′ , then there exists a KD45 impossible-worlds structure M = ({w, w ′}, {w ′, w ′′},π, C) such that
(M, w) |� Kϕ iff ϕ ∈ F and (M, w ′) |� ψ for all ψ ∈ F ′ . Finally, if F = F ′ , then we can take w = w ′ , so that M is an S5 awareness
(resp., S5 impossible-worlds) structure.

Proof. In the case of KD45 awareness structures, let M = ({w, w ′}, {w ′},π, A), where π(w ′) makes all the propositional
formulas in F ′ true, A(w) = F , and A(w ′) = {ϕ | Kϕ ∈ F ′}. We now prove by induction that if ϕ ∈ F ′ then (M, w ′) |� ϕ .
This is true by construction in the case of primitive propositions and follows easily from the induction hypothesis in the
case of conjunctions. If ϕ has the form Kψ then, since ψ must be in F ′ , it follows from the induction hypothesis that
(M, w ′) |� ψ and, by construction, that ψ ∈ A(w ′). Thus, (M, w ′) |� Kψ . Finally, if ϕ has the form ¬ψ , we consider the
possible forms of ψ . If ψ is a primitive proposition it follows from the definition of π(w ′). If ψ has the form ¬ψ ′ , then
ψ ′ ∈ F ′ , so, by the induction hypothesis, (M, w ′) |� ψ ′ . Hence, (M, w ′) |� ϕ . Similarly, the result follows from the definition
of downward closure and the induction hypothesis if ψ has the form ψ1 ∧ψ2. Finally, if ψ has the form Kψ ′ , then the result
follows from the definition on A(w ′). It is now immediate that (M, w) |� Kϕ iff ϕ ∈ F : if (M, w) |� Kϕ then it follows from
the definition of A(w) that we must have ϕ ∈ F . Conversely, if ϕ ∈ F , then ϕ ∈ A(w) and (M, w ′) |� ϕ (since F ⊆ F ′), so
(M, w) |� Kϕ .

If F = F ′ , then we can take w = w ′ in this argument to get an S5 awareness structure.
In the case of impossible-worlds structures, let M = ({w, w ′}, {w ′, w ′′},π, C), where π(w ′) makes all the propositional

formulas in F ′ true and C(w ′′) = F . A proof by induction on the structure of formulas much like that above shows that
(M, w ′) |� ϕ if ϕ ∈ F ′ . To deal with the case that ϕ = Kψ , we use the fact that F is k-compatible with F ′ to get that ψ ∈ F ,
so that (M, w ′′) |� ψ . To see that (M, w) |� Kϕ iff ϕ ∈ F , first observe that if ϕ ∈ F then, by construction ϕ ∈ C(w ′′), and,
since F ⊆ F ′ , (M, w ′) |� ϕ , so (M, w) |� Kϕ . For the converse, if (M, w) |� Kϕ , then (M, w ′′) |� ϕ , so ϕ ∈ F . �

We can characterize these properties axiomatically. Let (Ver) be the standard Veridicality axiom, which says that every-
thing known must be true:

Kϕ ⇒ ϕ. (Ver)

Let AXVer be the axiom system consisting of {Prop,MP,Ver}. The fact that the set of formulas known must be a subset of a
downward-closed set is characterized by the following axiom:

¬(Kϕ1 ∧ · · · ∧ Kϕn) if AXVer � ¬(ϕ1 ∧ · · · ∧ ϕn). (DC)

The key point here is that, as we shall show, a propositionally consistent set of formulas that is downward closed must be
consistent with AXVer .

The fact that the set of formulas that is known is k-compatible with a downward-closed set of formulas is characterized
by the following axiom:

(Kϕ1 ∧ · · · ∧ Kϕn) ⇒ (Kψ1 ∨ · · · ∨ Kψm) if AXVer � ϕ1 ∧ · · · ∧ ϕn ⇒ (Kψ1 ∨ · · · ∨ Kψm). (KC)

Axiom DC is just the special case of axiom KC where m = 0. It is also easy to see that KC (and therefore DC) follow
from Ver. As we now show, DC is strictly weaker than KC. Suppose that Φ = {p} (so that p is the only primitive proposition
in the language), and take M = ({w1, w2}, w2,π, A), where π makes p true at both w1 and w2, A(w1) = {Kp}, and
A(w2) = {Kp, p}. Every instance of DC is valid in M (this is the soundness part of Theorem 3.6(a) below). Now consider
the formula Kp ⇒ Kp. This is an instance of Prop, so AXVer � Kp ⇒ Kp. Thus, if every instance of KC were valid in M , we
would have K Kp ⇒ Kp valid in M . It is easy to check that (M, w1) |� K Kp, since Kp ∈ A(w1) and (M, w2) |� Kp, but
(M, w1) |� ¬Kp, because p /∈ A(w1). Therefore the K Kp ⇒ Kp instance of KC is not in fact valid in M .

Let AXDC = {Prop,MP,DC} and let AXKC = {Prop,MP,KC}.

Theorem 3.6.

(a) AXDC is a sound and complete axiomatization of L K with respect to KD45 awareness structures;
(b) AXKC is a sound and complete axiomatization of L K with respect to KD45 impossible-worlds structures;
(c) AXVer is a sound and complete axiomatization of L K with respect to S5 awareness structures and S5 impossible-worlds structures.

Proof. (a) We first prove soundness. Consider axiom DC. Suppose that AXVer � ¬(ϕ1 ∧ · · ·∧ϕn). Let M = (W , W ′,π, A) be a
KD45 awareness structure. For each world w ′ ∈ W ′ , it easily follows from Proposition 3.3 (taking w = w ′) that each instance
of axiom Ver holds at (M, w ′), as does each instance of Prop. An easy argument by induction on the length of proof then
shows that, if AXVer � ψ , then (M, w ′) |� ψ . In particular, (M, w ′) |� ¬(ϕ1 ∧ · · · ∧ ϕn). It follows that, for each w ∈ W , we
must have (M, w) |� ¬(Kϕ1 ∧ · · · ∧ Kϕn).

For completeness, it suffices to show that, given an AXDC-consistent formula ϕ , there exists a KD45 awareness structure
M and world w such that (M, w) |� ϕ . So suppose that ϕ is AXDC-consistent. Let G be a maximal AXDC-consistent set
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containing ϕ . Let F = {ψ | Kψ ∈ G}. We claim that F is AXVer-consistent. If not, then there exist ϕ1, . . . , ϕn ∈ G such that
AXVer � ¬(ϕ1 ∧ · · · ∧ ϕn). But then by axiom DC, we have that AXDC � ¬(Kϕ1 ∧ · · · ∧ Kϕn), contradicting the fact that G is
AXDC-consistent. Thus, F is consistent with AXVer . Let F ′ be a maximal AXVer-consistent set extending F . Then it is easy to
check that F ′ is a propositionally consistent downward-closed set of formulas that contains F . Thus, by Theorem 3.5, there
is a KD45 awareness structure M = ({w, w ′}, {w ′},π, A) such that (M, w) |� Kψ for all ψ ∈ F . We can assume without
loss of generality that w 
= w ′ and that π(w) makes all the primitive propositions in F true. (Note that this would not be
the case if we were dealing with S5 awareness structures.) An easy induction on the structure of formulas then shows that
(M, w) |� ψ for all ψ ∈ G . In particular, (M, w) |� ϕ .

(b) For soundness, essentially the same argument as in part (a) shows that axiom DC is sound in KD45 impossible-
worlds structures. A similar argument also shows the soundness of KC with respect to KD45 impossible-worlds structures.
For suppose that M = (W , W ′,π, C) is an impossible-worlds structure, w ∈ W , AXVer � (ϕ1 ∧· · ·∧ϕn) ⇒ (Kψ1 ∨· · ·∨ Kψm),
and (M, w) |� Kϕ1 ∧ · · · ∧ Kϕn . Thus, (M, w ′′) |� ϕ1 ∧ · · · ∧ ϕn for all w ′′ ∈ W ′ . But since each world in W ∩ W ′ is a
model of AXVer , if w ′ ∈ W ∩ W ′ , we must have (M, w ′) |� Kψ1 ∨ · · · ∨ Kψm . Moreover, since W ∩ W ′ 
= ∅, there must be
some world w ′ ∈ W ∩ W ′ . It follows that, for some j ∈ {1, . . . ,m}, (M, w ′) |� Kψ j . Thus, (M, w ′′) |� ψ j for all w ′′ ∈ W ′ , so
(M, w) |� Kψ j . It follows that (M, w) |� Kψ1 ∨ · · · ∨ Kψm , as desired.

For completeness, we use much the same argument as in part (a). Suppose that ϕ is AXKC-consistent. Let G be a maximal
AXKC-consistent set containing ϕ . Let F = {ψ | Kψ ∈ G}, and let G ′ = F ∪ {¬ψ | ¬Kψ ∈ G}. We again claim that G ′ is AXVer-
consistent. If not, then there exist Kϕ1, . . . , Kϕn, Kψ1, . . . , Kψm ∈ G such that AXVer � (ϕ1 ∧· · ·∧ϕn) ⇒ (Kψ1 ∨· · ·∨ Kψm). By
axiom KC, we have that AXKC � (Kϕ1 ∧· · ·∧ Kϕn) ⇒ (Kψ1 ∨· · ·∨ Kψm), contradicting the fact that G is AXKC-consistent. Thus,
G ′ is consistent with AXVer . Again, let F ′ be a maximal AXVer-consistent set extending G ′ . Then it is easy to check that F ′
is a propositionally consistent downward-closed set of formulas that contains F ; moreover the construction guarantees that
F is k-compatible with F ′ . Thus, by Theorem 3.5, there is a KD45 impossible-worlds structure M = ({w, w ′}, {w ′, w ′′},π, C)

such that (M, w) |� Kψ for all ψ ∈ F . We can assume without loss of generality that w 
= w ′ and that π(w) makes all the
primitive propositions in F true. An easy induction on the structure of formulas then shows that (M, w) |� ψ for all ψ ∈ G .
In particular, (M, w) |� ϕ .

(c) For soundness, as we have already observed, the soundness of Ver in S5 awareness and impossible-worlds structures
follows easily from Propositions 3.3 and 3.4.

For completeness, let AX = {Prop,MP,Ver}. Suppose that ϕ is consistent with AX. Extend ϕ to a maximally AX-consistent
set F of formulas. It suffices to show that F is satisfiable in an S5 awareness structure and in an S5 impossible-worlds
structure. In the case of awareness structures, consider the structure M = ({w}, {w},π, A), where π(w)(p) = true iff p ∈ F
and A(w) = {ψ | Kψ ∈ F }. We now show by induction on the structure of formulas that (M, w) |� ψ iff ψ ∈ F . If ψ is a
primitive proposition, then this is immediate from the definition of π . If ψ has the form ¬ψ ′ , then the result is immediate
from the induction hypothesis. If ψ has the form ψ1 ∧ψ2, this is immediate from the observation that, since F is a maximal
AX-consistent set and propositional reasoning is sound in AX that ψ1 ∧ ψ2 ∈ F iff ψ1 ∈ F and ψ2 ∈ F . If ψ has the form
Kψ ′ , note that if Kψ ′ ∈ F then ψ ′ ∈ F (since Ver ∈ F ). By the induction hypothesis, (M, w) |� ψ ′ . Thus, (M, w) |� Kψ ′ . For
the converse, if (M, w) |� Kψ ′ , suppose, by way of contradiction, that Kψ ′ /∈ F . Then, by construction, ψ ′ /∈ A(w). Thus,
(M, w) |� ¬Kψ ′ , a contradiction.

To show that F is satisfiable in an S5 impossible-worlds structure, consider the structure M = ({w}, {w, w ′},π, C), where
π(w)(p) = true iff p ∈ F and C(w ′) = {ψ | Kψ ∈ F }. Thus, C(w ′) is the same set of formulas as A(w) in the argument for S5
awareness structures. An almost identical argument as in the case of S5 awareness structures now shows that (M, w) |� ψ

iff ψ ∈ F . We leave details to the reader. �
Note that in all cases of Theorem 3.6, we proved completeness by constructing, for a given consistent formula, a satisfying

structure with few worlds. This indicates that awareness structures and impossible-worlds structures are quite flexible—the
lack of restrictions on both awareness sets and truth assignments to impossible worlds lets us easily capture states of
knowledge with few worlds.

Corollary 3.7. The satisfiability problem for the language L K with respect to KD45 awareness structures (resp., KD45 impossible-worlds
structures, S5 awareness structures, S5 impossible-worlds structures) is NP-complete.

Proof. NP-hardness follows immediately from the observation that L K contains propositional logic. The fact that the satis-
fiability problem with respect to each of these classes of structures is in NP follows from the construction of Theorem 3.6,
which shows that if a formula ϕ is satisfiable with respect to KD45 awareness structures (resp., KD45 impossible-worlds
structures, S5 awareness structures, S5 impossible-worlds structures), then it is consistent with respect to AXDC (resp. AXKC ,
AXVer), which in turn implies that it is satisfiable in a KD45 awareness structure (resp., KD45 impossible-worlds structure, S5
awareness structure, S5 impossible-worlds structure) M = (W , W ′, . . .) with two (resp., three, one) world(s). Without loss of
generality, we can also assume that, in the case of awareness structures, at each world w ∈ W , A(w) is a subset of Sub(ϕ),
the set of subformulas of ϕ , and π(w)(p) = true only if p is a subformula of ϕ; similarly, in the case of impossible-worlds
structures, we can assume that for each impossible world w ′ , C(w ′) is a subset of the subformulas of ϕ . (If this is not true
in M , then we can easily modify M so that this is true without affecting the truth of ϕ or any subformula of ϕ in any
world.) Thus, we can guess a satisfying structure for ϕ and verify that it satisfies ϕ in time linear in the length of ϕ . �
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4. Adding probability

While the differences between K45, KD45− , and KD45 impossible-worlds structures may appear minor, they turn out
to be important when we add probability to the picture. As pointed out by Cozic [2], standard models for reasoning about
probability suffer from the same logical omniscience problem as models for knowledge. In the language considered by Fagin,
Halpern, and Megiddo [9] (FHM from now on), there are formulas that talk explicitly about probability. A formula such as
�(Primen) = 1/3 says that the probability that n is prime is 1/3. In the FHM semantics, a probability is put on the set of
worlds that the agent considers possible. The probability of a formula ϕ is then the probability of the set of worlds where
ϕ is true. Clearly, if ϕ and ψ are logically equivalent, then �(ϕ) = �(ψ) will be true. However, the agent may not recognize
that ϕ and ψ are equivalent, and so may not recognize that �(ϕ) = �(ψ). Problems of logical omniscience with probability
can to some extent be reduced to problems of logical omniscience with knowledge in a logic that combines knowledge
and probability [8]. For example, the fact that an agent may not recognize �(ϕ) = �(ψ) when ϕ and ψ are equivalent
just amounts to saying that if ϕ ⇔ ψ is valid, then we do not necessarily want K (�(ϕ) = �(ψ)) to hold. However, adding
knowledge and awareness does not prevent �(ϕ) = �(ψ) from holding. This is not really a problem if we interpret �(ϕ) as
the objective probability of ϕ; if ϕ and ψ are equivalent, it is an objective fact about the world that their probabilities are
equal, so �(ϕ) = �(ψ) should hold. On the other hand, if �(ϕ) represents the agent’s subjective view of the probability of ϕ ,
then we do not want to require �(ϕ) = �(ψ) to hold. This cannot be captured in all approaches.

To make this precise, we first clarify the logic we have in mind. Let L K ,QU be L K extended with linear inequality formulas
involving probability (called likelihood formulas), in the style of FHM. A likelihood formula is of the form a1�(ϕ1) + · · · +
an�(ϕn) � c, where a1, . . . ,an and c are integers. (For ease of exposition, we restrict the ϕ1, . . . , ϕn appearing in likelihood
formulas to be propositional, that is, with no occurrences of � and K ; however, the techniques presented here can be
extended to deal with formulas that allow arbitrary nesting of � and K .) We give semantics to these formulas by extending
Kripke structures with a probability distribution over the worlds that the agent considers possible. A probabilistic KD45 (resp.,
S5) Kripke structure is a tuple (W , W ′,π,μ), where (W , W ′,π) is KD45 (resp., S5) Kripke structure, and μ is a probability
distribution over W ′ . To interpret likelihood formulas, we first define [[ϕ]]M = {w ∈ W | π(w)(ϕ) = true}, for a propositional
formula ϕ . We then extend the semantics of L K with the following rule for interpreting likelihood formulas:

(M, w) |� a1�(ϕ1) + · · · + an�(ϕn) � c iff a1μ
([[ϕ1]]M ∩ W ′) + · · · + anμ

([[ϕn]]M ∩ W ′) � c.

Note that the truth of a likelihood formula at a world does not depend on that world; if a likelihood formula is true at a
world of a structure M , then it is true at every world of M .

FHM give an axiomatization for likelihood formulas in probabilistic structures. Aside from propositional reasoning axioms,
one axiom captures reasoning with linear inequalities. A basic inequality formula is a formula of the form a1x1 + · · · + akxk +
ak+1 � b1 y1 + · · · + bm ym + bm+1, where x1, . . . , xk, y1, . . . , ym are (not necessarily distinct) variables. A linear inequality
formula is a Boolean combination of basic linear inequality formulas. A linear inequality formula is valid if the resulting
inequality holds under every possible assignment of real numbers to variables. For example, the formula (2x + 3y � 5z) ∧
(x − y � 12z) ⇒ (3x + 2y � 17z) is a valid linear inequality formula. To get an instance of Ineq, we replace each variable xi
that occurs in a valid formula about linear inequalities by a likelihood term of the form �(ψ) (naturally, each occurrence
of the variable xi must be replaced by the same primitive expectation term �(ψ)). (We can replace Ineq by a sound and
complete axiomatization for Boolean combinations of linear inequalities; one such axiomatization is given in FHM.)

The other axioms of FHM are specific to probabilistic reasoning, and capture the defining properties of probability distri-
butions:

�(true) = 1,

�(¬ϕ) = 1 − �(ϕ),

�(ϕ ∧ ψ) + �(ϕ ∧ ¬ψ) = �(ϕ).

It is straightforward to extend all the approaches in Section 2 to the probabilistic setting. In this section, we only con-
sider probabilistic awareness structures and probabilistic impossible-worlds structures, because the interpretation of both
algorithmic knowledge and knowledge in syntactic structures does not depend on the set of worlds or any probability
distribution over the set of worlds.

A KD45 (resp., S5) probabilistic awareness structure is a tuple (W , W ′,π, A,μ) where (W , W ′,π, A) is a KD45 (resp., S5)
awareness structure and μ is a probability distribution over the worlds in W ′ . Similarly, a KD45− (resp., KD45, S5) probabilistic
impossible-worlds structure is a tuple (W , W ′,π, C,μ) where (W , W ′,π, C) is a KD45− (resp., KD45, S5) impossible-worlds
structure and μ is a probability distribution over the worlds in W ′ . Since the set of worlds that are assigned probability
must be nonempty, when dealing with probability, we must restrict to KD45 awareness structures and KD45− impossible-
worlds structures, extended with a probability distribution over the set of worlds the agent considers possible. As we now
show, adding probability to the language allows finer distinctions between awareness structures and impossible-worlds
structures.

In probabilistic awareness structures, the axioms of probability described by FHM are all valid. For example, �(ϕ) = �(ψ)

is valid in probabilistic awareness structures if ϕ and ψ are equivalent formulas. Using arguments similar to those in
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Theorem 3.5, we can show that ¬K¬�(ϕ) = �(ψ) is valid in probabilistic awareness structures. Similarly, since �(ϕ) +
�(¬ϕ) = 1 is valid in probability structures, ¬K (¬(�(ϕ) + �(¬ϕ) = 1)) is valid in probabilistic awareness structures.

We can characterize properties of knowledge and likelihood in probabilistic awareness structures axiomatically. Let Prob
denote a substitution instance of a valid formula in probabilistic logic (using the FHM axiomatization). By the observation
above, Prob is sound in probabilistic awareness structures. Our reasoning has to take this into account. There is also an
axiom KL that connects knowledge and likelihood:

Kϕ ⇒ �(ϕ) > 0. (KL)

Let AXP
Ver denote the axiom system consisting of {Prop,MP,Prob,KL,Ver}. Let DCP be the following strengthening of DC,

somewhat in the spirit of KC:

(Kϕ1 ∧ · · · ∧ Kϕn) ⇒ (ψ1 ∨ · · · ∨ ψm)

if AXP
Ver � ϕ1 ∧ · · · ∧ ϕn ⇒ (ψ1 ∨ · · · ∨ ψm)

and ψ1, . . . ,ψm are likelihood formulas. (DCP )

Finally, even though Ver is not sound in KD45 probabilistic awareness structures, a weaker version, restricted to likelihood
formulas, is sound, since there is a single probability distribution in probabilistic awareness structures. Let WVer be the
following axiom:

Kϕ ⇒ ϕ if ϕ is a likelihood formula. (WVer)

Let AXP
DC = {Prop,MP,Prob,DCP ,WVer,KL} be the axiom system obtained by replacing DC in AXDC by DCP and adding

Prob, WVer, and KL.

Theorem 4.1.

(a) AXP
DC is a sound and complete axiomatization of L K ,QU with respect to KD45 probabilistic awareness structures.

(b) AXP
Ver is a sound and complete axiomatization of L K ,QU with respect to S5 probabilistic awareness structures.

Proof. (a) We first prove soundness. We have already argued that Prob is sound in KD45 probabilistic awareness structures.
It is easy to see that KL is sound: let M = (W , W ′,π, A,μ) be a KD45 probabilistic awareness structure, and let w be
a world in W such that (M, w) |� Kϕ . This means that ϕ is true at every world w ′ ∈ W ′ , and therefore, μ([[ϕ]]M ∩
W ′) = μ(W ′) > 0, that is, (M, w) |� �(ϕ) > 0. Similarly, WVer is sound: let M = (W , W ′,π, A,μ) be a KD45 probabilistic
awareness structure, and let w be a world in W such that (M, w) |� Kϕ , with ϕ a likelihood formula. This means that ϕ is
true at every world w ′ ∈ W ′ , and because ϕ is a likelihood formula, the truth of ϕ does not depend on the world. Thus, if
ϕ is true at some world, it is true at every world; in particular, it is true at w , so that (M, w) |� ϕ , as required. Finally, we
show soundness of DC P , using an argument similar to that in the proof of Theorem 3.6. Suppose that M = (W , W ′,π, A,μ)

is a KD45 probabilistic awareness structure, w ∈ W , AXP
Ver � (ϕ1 ∧ · · · ∧ ϕn) ⇒ (ψ1 ∨ · · · ∨ ψm), for likelihood formulas

ψ1, . . . ,ψm , and (M, w) |� Kϕ1 ∧ · · · ∧ Kϕn . Thus, (M, w ′′) |� ϕ1 ∧ · · · ∧ ϕn for all w ′′ ∈ W ′ . But since each world in W ′ is a
model of AXP

Ver , if w ′ ∈ W ′ , we must have (M, w ′) |� ψ1 ∨ · · · ∨ ψm . Since W ′ 
= ∅, let w ′ be an element of W ′ . For some
j ∈ {1, . . . ,m}, we must have (M, w ′) |� ψ j . Because ψ j is a likelihood formula, and therefore its truth does not depend
on the world, if ψ j is true at some world, then ψ j is true at every world. In particular, (M, w) |� ψ j , and it follows that
(M, w) |� ψ1 ∨ · · · ∨ ψm , as desired.

Completeness follows from combining techniques from the FHM completeness proof with those of Theorem 3.6. We
briefly sketch the main ideas here. Define SubP (ϕ) to be the least set containing ϕ , closed under subformulas, and containing
�(ψ) > 0 if it contains a propositional formula ψ . It is easy to see that |SubP (ϕ)| � 2|ϕ|. Suppose that ϕ is consistent with
AXP

DC . Let F be a maximal AXP
DC-consistent subset of SubP (ϕ) that includes ϕ . Let S consist of all truth assignments to

primitive propositions. Using techniques of FHM, we can show that there must be a probability measure μ on S that makes
all the likelihood formulas in F true. We remark for future reference that the FHM proof shows that we can take the set of
truth assignments which get positive probability to be polynomial in the size of |ϕ|, and we can assume that the probability
is rational, with a denominator whose size is polynomial in |ϕ|.

Let H = {ψ | Kψ ∈ F } ∪ {ψ | ψ ∈ F ,ψ is a likelihood formula}. Arguments almost identical to those in Theorem 3.6 show
that H must be AXP

DC-consistent. Hence there is a maximal AXP
DC-consistent subset F ′ of SubP (ϕ) that contains H . We now

construct a KD45 awareness structure ({w} ∪ W ′, W ′, A,μ′) as follows. There is a world w v in W ′ corresponding to each
truth assignment v such that μ(v) > 0 and a world w ′ corresponding to F ′; we define μ′ on W ′ so that μ′(w ′) = 0 and
μ′(w v ) = μ(v). Define π so that π(w v ) = v , π(w)(p) = true iff p ∈ F and π(w ′)(p) = true iff p ∈ F ′ . Finally, define A
so that A(w v ) = ∅, A(w ′) = {ψ | Kψ ∈ F ′} and A(w) = {ψ | Kψ ∈ F }. Now the same ideas as in the proof of Theorem 3.6
show that, for each formula ψ ∈ SubP (ϕ) we have that (M, w ′) |� ψ iff ψ ∈ F ′ and (M, w) |� ψ iff ψ ∈ F . Thus, (M, w) |� ϕ .

(b) The soundness of Ver in S5 probabilistic awareness structures follows easily by induction on the structure of ϕ in
Kϕ , using the fact that WVer—the special case of Ver when ϕ is a likelihood formula—is sound in probabilistic awareness
structures, and the argument for the soundness of Ver in S5 awareness structures.
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The proof of completeness is similar in spirit to the proof of completeness in part (a); the modifications required are
exactly those needed to prove Theorem 3.6(c). We leave details to the reader. �

Things change significantly when we move to probabilistic impossible-worlds structures. In particular, Prob is no longer
sound. For example, even if ϕ ⇔ ψ is valid, �(ϕ) = �(ψ) is not valid, because we can have an impossible possible world with
positive probability where both ϕ and ¬ψ are true. Similarly, �(ϕ) + �(¬ϕ) = 1 is not valid. Indeed, both �(ϕ) + �(¬ϕ) >

1 and �(ϕ) + �(¬ϕ) < 1 are satisfiable in impossible-worlds structures: the former requires that there be an impossible
possible world that gets positive probability where both ϕ and ¬ϕ are true, while the latter requires an impossible possible
world with positive probability where neither is true. As a consequence, it is not hard to show that both K¬(�(ϕ) = �(ψ))

and K (¬(�(ϕ) + �(¬ϕ) = 1)) are satisfiable in such impossible-worlds structures.5 In fact, the only constraint on probability
in probabilistic impossible-worlds structures is that it must be between 0 and 1. This constraint is expressed by the following
axiom Bound:

�(ϕ) � 0 ∧ �(ϕ) � 1. (Bound)

We can characterize properties of knowledge and likelihood in probabilistic impossible-worlds structures axiomati-
cally. Let AXB

imp = {Prop,MP, Ineq,Bound,KL,WVer}. We can think of AXB
imp as being the core of probabilistic reasoning in

impossible-worlds structures.
Let AXB

Ver denote the axiom system consisting of {Prop,MP, Ineq,Bound,Ver,KL}. Let KCP denote the following extension
of KC:

(Kϕ1 ∧ · · · ∧ Kϕn) ⇒ (ψ1 ∨ · · · ∨ ψm)

if AXP
Ver � ϕ1 ∧ · · · ∧ ϕn ⇒ (ψ1 ∨ · · · ∨ ψm)

and ψ j is either a likelihood formula or of the form Kψ ′, for j = 1, . . . ,m. (KCP )

Here again, DCP is a special case of KCP . Let AXB
KC = {Prop,MP, Ineq,Bound,KCP ,WVer,KL} obtained by replacing KC in AXKC

by KCP and adding Ineq, Bound, WVer and KL.

Theorem 4.2.

(a) AXB
imp is a sound and complete axiomatization of L K ,QU with respect to KD45− probabilistic impossible-worlds structures.

(b) AXB
KC is a sound and complete axiomatization of L K ,QU with respect to KD45 probabilistic impossible-worlds structures.

(c) AXB
Ver is a sound and complete axiomatization of L K ,QU with respect to S5 probabilistic impossible-worlds structures.

Proof. (a) We first prove soundness. The argument is similar to the argument for soundness in Theorem 4.1. That KL
and WVer are sound in probabilistic impossible-worlds structures follows from the same argument as in Theorem 4.1.
To show that Bound is sound, note that for any probabilistic impossible-worlds structure M , [[ϕ]]M ∩ W ′ ⊆ W ′ , so that
0 � μ([[ϕ]]M) � 1. Because this is independent of the actual world, (M, w) |� �(ϕ) � 0 ∧ �(ϕ) � 1 holds.

For completeness, given a formula ϕ consistent with AXimp , let F be a maximal AXimp-consistent subset of SubP (ϕ)

that includes ϕ . Consider the basic likelihood formulas in F . From these, we can get a system of linear inequalities by
replacing each term �(ψ) by a variable xψ . We add an inequality 0 � xψ � 1 for each formula ψ ∈ SubP (ϕ). Using the
arguments of FHM, we can show that this set of inequalities must be satisfiable (otherwise F would not be AXimp-
consistent). Take a solution. Without loss of generality, we have subformulas listed so that xψ1 � xψ2 � · · · � xψn . Let n∗
be the least m such that xψm = 1; if xψn < 1, then let n∗ = n + 1. Consider a probabilistic impossible-worlds structure
({w}, {w1, . . . , wn+1, w},π, C,μ), where we define π , C and μ as follows:

• π(w)(p) = true iff p ∈ F ;
• μ(w1) = xψ1 , μ(w j) = xψ j − xψ j−1 for j = 2, . . . ,n, and μ(wn+1) = 1 − μ(wn);
• C(w j) = {ψ j, . . . ,ψn} for j = 1, . . . ,n∗;
• C(w j) = C(wn∗ ) if j = n∗ + 1, . . . ,n + 1.

We leave it to the reader to show that (M, w) |� ϕ .
(b) We show soundness of KCP with respect to KD45 probabilistic impossible-worlds structures. For suppose that M =

(W , W ′,π, C,π) is a KD45 probabilistic impossible-worlds structure, w ∈ W , AXVer � (ϕ1 ∧· · ·∧ϕn) ⇒ (ψ1 ∨· · ·∨ψm), where
each ψ j either a likelihood formula or of the form Kψ ′ , and (M, w) |� Kϕ1 ∧ · · · ∧ Kϕn . Thus, (M, w ′′) |� ϕ1 ∧ · · · ∧ ϕn for
all w ′′ ∈ W ′ . But since each world in W ∩ W ′ is a model of AXP

Ver , if w ′ ∈ W ∩ W ′ , we must have (M, w ′) |� ψ1 ∨ · · · ∨ ψm .

5 We remark that Cozic [2], who considers the logical omniscience problem in the context of probabilistic reasoning, makes somewhat similar points.
Although he does not formalize things quite the way we do, he observes that, in his setting, impossible-worlds structures seem more expressive than
awareness structures.
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Moreover, since W ∩ W ′ 
= ∅, there must be some world w ′ ∈ W ∩ W ′ . It follows that, for some j ∈ {1, . . . ,m}, (M, w ′) |� ψ j .
There are two cases. If ψ j is a likelihood formula, then its truth does not depend on the world, so that if ψ j is true at some
world, then ψ j is true at every world. In particular, (M, w) |� ψ j , and it follows that (M, w) |� ψ1 ∨ · · · ∨ ψm , as desired.
If ψ j is a formula of the form Kψ ′ , then (M, w ′′) |� ψ ′ for all w ′′ ∈ W ′ , so (M, w) |� Kψ ′ , that is, (M, w) |� ψ j . It follows
that (M, w) |� ψ1 ∨ · · · ∨ ψm , as desired.

The completeness argument is similar in spirit to that of part (a) and left to the reader.
(c) For soundness, as in the proof of Theorem 4.1, the soundness of Ver in S5 probabilistic impossible-worlds structures

follows by induction on the structure of ϕ in Kϕ .
The completeness argument is similar in spirit to that of part (a) and left to the reader. �
Observe that Theorem 4.2 is true even though probabilities are standard in impossible worlds: the probabilities of worlds

still sum to 1. It is just the truth assignment to formulas that behaves in a nonstandard way in impossible worlds. Intuitively,
while the awareness approach is modeling certain consequences of resource-boundedness in the context of knowledge, it
does not do so for probability. On the other hand, the impossible-worlds approach seems to extend more naturally to
accommodate the consequences of resource-boundedness in probabilistic reasoning; see Section 5 for more discussion of
this issue.

Corollary 4.3. The satisfiability problem for the language L K ,QU with respect to KD45 probabilistic awareness structures (resp., S5
probabilistic awareness structures, KD45− probabilistic impossible-worlds structures, KD45 probabilistic impossible-worlds structures,
S5 probabilistic impossible-worlds structures) is NP-complete.

Proof. Again, NP-hardness follows immediately from the observation that L K ,QU contains propositional logic. The fact that
the satisfiability problem with respect to each of these classes of structures is in NP follows from the constructions of
Theorems 4.1 and 4.2, which show that if a formula ϕ is satisfiable with respect to KD45 probabilistic awareness struc-
tures (resp., S5 probabilistic awareness structures, KD45− probabilistic impossible-worlds structures, KD45 probabilistic
impossible-worlds structures, S5 probabilistic impossible-worlds structures), then it is consistent with respect to AXP

DC (resp.,
AXP

Ver , AXB
imp , AXB

KC , AXB
Ver) which in turn implies that it is satisfiable in a KD45 probabilistic awareness structure (resp., S5

probabilistic awareness structure, KD45− probabilistic impossible-worlds structure, KD45 probabilistic impossible-worlds
structure, S5 probabilistic impossible-worlds structure) M = (W , W ′, . . .) with a small number of worlds—polynomial in the
length of ϕ in each case. Just as in the proof of Corollary 3.7, without loss of generality, we can assume that, in the case
of probabilistic awareness structures, at each world w ∈ W , A(w) is a subset of Sub(ϕ), the set of subformulas of ϕ , and
π(w)(p) = true only if p is a subformula of ϕ; similarly, in the case of probabilistic impossible-worlds structures, we can
assume that for each impossible world w ′ , C(w ′) is a subset of the subformulas of ϕ . Finally, using the arguments of FHM,
we can argue without loss of generality that the probability distributions μ are described in size polynomial in the length
of ϕ . (The probability distributions in all structures can be taken to assign small—polynomial-size—rational probabilities to
every world, where the size of a rational number is the sum of the sizes of the numerator and denominator when they are
relatively prime.) Thus, we can guess a satisfying structure for ϕ and verify that it satisfies ϕ in time polynomial in the
length of ϕ . �
5. Pragmatic issues

Even in settings where the four approaches are equi-expressive, they model lack of logical omniscience quite differently.
We thus have to deal with different issues when attempting to use one of them in practice. By “in practice”, we mean
attempting to use one of the models above to capture a particular scenario about which one wants to reason—as opposed,
say, to capturing a scenario using axioms in the logic, and reasoning exclusively using the proof rules of the logic. Issues like
the following can arise: If we are using a syntactic structure to represent a given situation, we need to explain where the
function C is coming from; with an awareness structure, we must explain where the awareness function is coming from;
with an algorithmic knowledge structure, we must explain where the algorithm is coming from; and with an impossible-
worlds structure, we must explain what the impossible worlds are.

There seem to be three quite distinct intuitions underlying the lack of logical omniscience. As we now discuss, these
intuitions can guide the choice of approach, and match closely the solutions described above. We discuss, for each intuition,
the extent to which each of the approaches to dealing with logical omniscience can capture that intuition. While the
discussion in this section is somewhat informal, we believe that these observations will prove important when actually
trying to decide how to model lack of logical omniscience in practice.

5.1. Lack of awareness

The first intuition is lack of awareness of some primitive notions: for example, an agent reasoning in 2002 about possible
outcomes of an attack on Iraq may not have even contemplated outcomes like suicide bombers. If “suicide bombers cause
many deaths” is a primitive proposition in the language of a more sophisticated modeler, then the agent would not be aware
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of this proposition, and hence could not even consider it possible that suicide bombers would cause many deaths. (Such
reasoning becomes more interesting if there is more than one agent, and they are aware of different primitive propositions.)

This can be modeled reasonably well using an awareness structure where the awareness function is generated by primitive
propositions. We assume that the agent is unaware of certain primitive propositions, and is unaware of exactly those formu-
las that contain a primitive proposition of which the agent is unaware. This intuition is quite prevalent in the economics
community, and all the standard approaches to modeling lack of logical omniscience in the economics literature [22,23,3,
16] can essentially be understood in terms of awareness structures where awareness is generated by primitive propositions
[11,14].

Of course, how we choose these primitive propositions is critical to the modeling process. What counts as a primitive
proposition is ultimately in the eye of the beholder, and different modelers may well choose different primitive propositions
to capture a particular scenario. However, for many scenarios, the choice of primitive propositions is usually clear and
uncontroversial, as witnessed by the popularity of the approach in the economics literature.

If awareness is generated by primitive propositions, constructing an awareness structure corresponding to a particular
situation is no more (or less!) complicated that constructing a Kripke structure to capture knowledge without awareness.
Determining the awareness sets for notions of awareness that are not generated by primitive propositions may be more
complicated. It is also worth stressing that an awareness structure must be understood as the modeler’s view of the situa-
tion. For example, if awareness is generated by primitive propositions and agent 1 is not aware of a primitive proposition p,
then agent 1 cannot contemplate a world where p is true (or false); in the model from agent 1’s point of view, p does not
exist.

How do the other approaches fare in modeling lack of awareness? To construct a syntactic structure, we need to know
all sentences that an agent knows before constructing the model. This may or may not be reasonable. But it does not help
in discovering properties of knowledge in a given situation. As observed in [10], the syntactic approach is really only a
representation of knowledge. Algorithmic knowledge can deal with lack of awareness reasonably well, provided that there
is an algorithm Aa for determining what the agent is aware of and an algorithm Ak for determining whether a formula
is true in every world in W ′ , the set of worlds that the agent considers possible. If so, given a query ϕ , the algorithmic
approach would simply invoke Aa to check whether the agent is aware of ϕ; if so, then the agent invokes Ak . For example,
if awareness is generated by primitive propositions, then Aa is the algorithm that, given query ϕ , checks whether all the
primitive propositions in ϕ are ones the agent is aware of; and we can take Ak to be the algorithm that does model
checking to see if ϕ is true in every world of W ′ . (This can be done in time polynomial in W ′; see [10].) In impossible-
worlds structures, we can interpret lack of awareness of ϕ as meaning that neither ϕ nor ¬ϕ is true at all worlds the
agent considers possible. Thus, if there is any nontrivial lack of awareness, then all the worlds that the agent considers
possible will be impossible worlds. However, these impossible worlds have a great deal of structure: we can require that
for all the formulas ϕ that the agent is aware of, exactly one of ϕ and ¬ϕ is true at each world the agent considers
possible. As we observed earlier, an awareness structure must be viewed as the modeler’s view of the situation. Arguably,
the impossible-worlds structure better captures the agent’s view.

5.2. Lack of computational ability

The second intuition is computational: an agent simply might not have the resources to compute the required answer.
But then the question is how to model this lack of computational ability. There are two cases of interest, depending on
whether we have an explicit algorithm in mind. If we have an explicit algorithm, then it is relatively straightforward. For
example, Konolige [18] uses a syntactic approach and gives an explicit characterization of C by taking it to be the set of
formulas that can be derived from a fixed initial set of formulas by using a sound but possibly incomplete set of inference
rules. Note that Konolige’s approach makes syntactic knowledge an instance of algorithmic knowledge. (See also Pucella [27]
for more details on knowledge algorithms given by inference rules.)

Algorithmic knowledge can be viewed as a generalization of Konolige’s approach in this setting, since it allows for the
possibility that the algorithm used by the agent to compute what he knows may not be easily expressible as a set of
inference rules over formulas. For example, Berman, Garay, and Perry [1] implicitly use a particular form of algorithmic
knowledge in their analysis of Byzantine agreement (this is the problem of getting all nonfaulty processes in a system
to coordinate, despite the presence of failures). Roughly speaking, they allow agents to perform limited tests based on
the information they have; agents know only what follows from these limited tests. But these tests are not characterized
axiomatically. As shown by Halpern and Pucella [13], algorithmic knowledge is also a natural way to capture adversaries in
security protocols.

Example 5.1. Security protocols are generally analyzed in the presence of an adversary that has certain capabilities for
decoding the messages he intercepts. There are of course restrictions on the capabilities of a reasonable adversary. For
instance, the adversary may not explicitly know that he has a given message if that message is encrypted using a key
that the adversary does not know. To capture these restrictions, Dolev and Yao [4] gave a now-standard description of
the capabilities of adversaries. Roughly speaking, a Dolev–Yao adversary can decompose messages, or decipher them if he
knows the right keys, but cannot otherwise “crack” encrypted messages. The adversary can also construct new messages by
concatenating known messages, or encrypting them with a known encryption key.
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Algorithmic knowledge is a natural way to capture the knowledge of a Dolev–Yao adversary [13]. We can use a knowl-
edge algorithm ADY to compute whether the adversary can extract a message m from a set H of messages that he has
intercepted, where the extraction relation H �DY m is defined by following inference rules:

m ∈ H

H �DY m

H �DY {m}k H �DY k

H �DY m

H �DY m1 · m2

H �DY m1

H �DY m1 · m2

H �DY m2
,

where m1 · m2 is the concatenation of messages m1 and m2, and {m}k is the encryption of message m with key k.
The knowledge algorithm ADY simply implements a search for the derivation of a message m from the messages that the

adversary has received and the initial set of keys, using the inference rules above. More precisely, we assume the language
has formulas has(m), interpreted as “the agent possesses message m”. When queried for a formula has(m), the knowledge
algorithm ADY simply checks if H �DY m, where H is the set of messages intercepted by the adversary. Thus, the formula
K (has(m)), which is true if and only if ADY says “Yes” to query has(m), that is, if and only if H �DY m, says that the adversary
can extract m from the messages he has intercepted.

However, even when our intuition is computational, at times the details of the algorithm do not matter (and, indeed,
may not be known to the modeler). In this case, awareness may be more useful than algorithmic knowledge.

Example 5.2. Suppose that Alice is trying to reason about whether or not an eavesdropper Eve has managed to decrypt a
certain message. The intuition behind Eve’s inability to decrypt is computational, but Alice does not know which algorithm
Eve is using. An algorithmic knowledge structure is typically appropriate if there are only a few algorithms that Eve might
be using, and her ability to decrypt depends on the algorithm.6 On the other hand, Alice might have no idea of what Eve’s
algorithm is, and might not care. All that matters to her analysis is whether Eve has managed to decrypt. In this case, using
a syntactic structure or an awareness structure seems more appropriate. Suppose that Alice wants to model her uncertainty
regarding whether Eve has decrypted the message. She could then use an awareness structure with some possible worlds
where Eve is aware of the message, and others where she is not, with the appropriate probability on each set. Alice can
then reason about the likelihood that Eve has decrypted the message without worrying about how she decrypted it.

What about the impossible-worlds approach? It cannot directly represent an algorithm, of course. However, if there is
algorithm A that characterizes an agent’s computational process, then we can simply take W ′ = {w ′} and define C(w ′) = {ϕ |
A(ϕ) = “Yes”}. Indeed, we can give a general computational interpretation of the impossible-worlds approach. The worlds w
such that C(w) are precisely those worlds where the algorithm answers “Yes” when asked about ϕ . If neither ϕ nor ¬ϕ is in
C(w), that just means that the algorithm was not able to determine whether ϕ was true or false. If the algorithm answers
“Yes” to both ϕ and ¬ϕ , then clearly the algorithm is not sound, but it may nevertheless describe how a resource-bounded
agent works.

This intuition also suggests how we can model the lack of computational ability illustrated by Example 5.2 using impos-
sible worlds. Suppose that we add new primitive propositions of the form cont(m) = c to the language that say that the
content of a message m is c. Then in a world where Alice cannot decrypt c, neither cont(m) = c nor ¬(cont(m) = c) would
be true.

5.3. Imperfect understanding of the model

Sometimes an agent’s lack of logical omniscience is best thought of as stemming from “mistakes” in constructing the
model (which perhaps are due to lack of computational ability).

Example 5.3. Suppose that Alice does not know whether a number n is prime. Although her ignorance regarding n’s pri-
mality can be viewed as computationally based—given enough time and energy, she could in principle figure out whether
n is prime—she need not be using a specific algorithm to compute her knowledge (at least, not one that she can easily
describe). Nor can her state of mind be modeled in a natural way using an awareness structure or a syntactic structure.
Intuitively, there should at least two worlds she considers possible, one where n is prime, and one where n is not. However,
n is either prime or it is not. If n is actually prime, then there cannot be a possible world where n is not prime; similarly, if
n is composite, there cannot be a possible world where n is prime. This problem can be modeled naturally using impossible
worlds. Now there is no problem having a world where n is prime (which is an impossible world if n is actually composite)
and a world where n is composite (which is an impossible world if n is actually prime). In this structure, it is also seems
reasonable to assume that Alice knows that she does not know that n is prime (so that the formula ¬K Primen is true even
in the impossible worlds).

It is instructive to compare this with the awareness approach. Suppose that n is indeed prime and an external modeler
knows this. Then he can describe Alice’s state of mind with one world, where n is prime, but Alice is not aware that n is

6 What is required here is an algorithmic knowledge structure with two agents. There will then be different algorithms for Eve associated with different
states. We omit here the straightforward details of how this can be done; see [12].
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prime. Thus, ¬K Primen holds at this one world. But note that this is not because Alice considers it possible that n is not
prime; rather, it is because Alice cannot determine whether n is prime using her internal algorithm. If Alice is aware of
the formula ¬K Primen at this one world, then K¬K Primen also holds. Again, we should interpret this as saying that Alice
knows that she cannot determine whether n is prime using her internal algorithm.

The impossible-worlds approach seems like a natural one in Example 5.3 and many other settings. As we saw, awareness
in this situation does not quite capture what is going on here. Algorithmic knowledge fares somewhat better, but it would
require us to have a specific algorithm in mind; in Example 5.3, this would force us to interpret “knows that a number is
prime” as “knows that a number is prime as tested by a particular factorization algorithm”.

The impossible-worlds approach can sometimes be difficult to apply, however, because it is not always clear what im-
possible worlds to incorporate in a model. While there has been a great deal of discussion (particularly in the philosophy
literature) concerning the “metaphysical status” of impossible worlds (cf. [30]), the pragmatics of generating impossible
worlds has received comparatively little attention. Hintikka [17] argues that Rantala’s [28] urn models are suitable candi-
dates for impossible worlds. In decision theory, Lipman [19] uses impossible-worlds structures to represent the preferences
of an agent who may not be able to distinguish logically equivalent outcomes; the impossible worlds are determined by
the preference order. None of these approaches address the problem of generating the impossible worlds even in a simple
example such as Example 5.3, especially if the worlds have some structure.

We view impossible worlds as describing the agent’s subjective view of a situation. The modeler may know that these
impossible worlds are truly impossible, but the agent does not. In many cases, the intuitive reason that the agent does not
realize that the impossible worlds are in fact impossible is that the agent does not look carefully at the worlds. Consider
Example 5.3. Let Primen , for various choices of n, be a primitive proposition saying that the number n is prime. Suppose that
the worlds are models of arithmetic, which include as domain elements the natural numbers with multiplication defined
on them. If Primen is interpreted as being true in a world when there do not exist numbers n1 and n2 in that world such
that n1 × n2 = n, then how does the agent conceive of the impossible worlds? If the agent were to look carefully at a world
where Primen holds, he might realize that there are in fact two numbers n1 and n2 such that n1 × n2 = n. But if n is not
prime, how do we capture the fact that the agent “mistakenly” constructed a world where there are numbers n1 and n2
such that n1 × n2 = n if we also assume that the agent understands basic multiplication?

We now sketch a new approach to constructing an impossible-worlds structure that seems appropriate for such exam-
ples. The approach is motivated by the observation that the set of worlds in a Kripke structure is explicitly specified, as is
the truth assignment on these worlds. Introspectively, this is not the way in which we model situations. Instead, the set of
possible worlds is described implicitly, as is the interpretation π , as the set of worlds satisfying some condition.7 This set of
worlds may well include some impossible worlds. The impossible-worlds structure corresponding to a situation, therefore,
is made up of all worlds satisfying the implicit description, perhaps refined so that “clearly impossible” worlds are not
considered. What makes a world clearly impossible should be determined by a simple test; for example, such a simple test
might determine that 3 is prime, but would not be able to determine that 224036583 − 1 is prime.

We can formalize this construction as follows. An implicit structure is a tuple I = (S, T , C), where S is a set of possible
worlds, T is a filter on worlds (a test on worlds that returns either true or false), and C associates with every world in
S a set (possibly inconsistent) of propositional formulas. Test T returns true for every world in S that the agent considers
possible. An implicit structure I = (S, T , C) induces an impossible-worlds structure MI = (W , W ′,π, C) given by:

W = {
w ∈ S

∣∣ C(w) is consistent
}
,

W ′ = {
w ∈ S

∣∣ T (w) = true
}
,

π(w) = C(w)|Φ for w ∈ W ,

C = C|(W ′−W ).

We can refine the induced impossible-worlds structure by allotting more resources to test T . Intuitively, as an agent per-
forms more introspection, she can recognize more worlds as being impossible. (Manne [20] investigates a related approach,
using a temporal structure at each world to capture the evolution of knowledge as the agent introspects over time.)

Consider the primality example again. The agent is likely to care about the primality of only a few numbers, say
n1, . . . ,nk . Let Φ = {Primen1 , . . . ,Primenk }. The agent’s inability to compute whether n1, . . . ,nk are prime is described im-
plicitly by having worlds where any combination of them is prime. The details of how multiplication works in a world
is not specified in the implicit description. Thus, the implicit structure I = (S, T , C) corresponding to this description will
have S consisting of 2k worlds, where each world is a standard model of arithmetic together with a truth assignment to the
primitive propositions in Φ . The set of formulas C(w) consists of all propositional formulas true under the truth assignment
at w . The agent realizes that all but one of these worlds is impossible, but cannot compute which one is the possible world.
Thus, we take T (w) = true for all worlds w . Of course, after doing some computation, the agent may realize that, say, n1 is

7 In multiagent settings, where the worlds that the agent considers possible are defined by an accessibility relation, we expect the accessibility relation
to be described implicitly as well.
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prime and n2 is composite. The agent would then refine the model by taking T to consider possible only worlds in which
n1 is prime and n2 is composite.

The use of an implicit description as a recipe for constructing possible (and impossible) worlds is quite general, as the
following example illustrates.

Example 5.4. Suppose that we have a database of implications: rules of the form C1 ⇒ C2, where C1 and C2 are conjunctions
of literals—primitive propositions and their negations. Suppose that the vocabulary of the conclusions of these rules is
disjoint from the vocabulary of the antecedents. This is a slight simplification of, for example, digital rights management
policies, where the conclusion typically has the form Permitted(a,b) or ¬Permitted(a,b) for some agent a and action b, and
Permitted is not allowed to appear in the antecedent of rules [15]. Rather than explicitly constructing the worlds compatible
with the rules, a user might construct a naive implicit description of them. More specifically, suppose that we have a finite
set of agents, say a1, . . . ,an , and a finite set of actions, say b1, . . . ,bm . Consider the implicit structure I = (S, T , C), where
each world w in S is a truth assignment to the atomic formulas that appear in the antecedents of rules, augmented with
all the literals in the conclusions of rules whose antecedent is true in w; furthermore, take T (w) = true for all w ∈ S ,
and C(w) to be all propositional formulas true under the truth assignment at world w . Thus, for example, if a rule says
Student(a) ∧ Female(a) ⇒ Permitted(a, Play-sports), then in a world where Student(a) and Female(a) are true, then so is
Permitted(a, Play-sports). Similarly, if we have a rule that says Faculty(a) ∧ Female(a) ⇒ ¬Permitted(a, Play-sports), then in a
world where Faculty(a) and Female(a) are true, ¬Permitted(a, Play-sports) as well. Of course, in a world Faculty(a), Student(a),
and Female(a) are all true, both Permitted(a, Play-sports) and ¬Permitted(a, Play-sports) are true; this is an impossible world.
This type of implicit description (and hence, impossible-worlds structure) should also be useful for characterizing large
databases, when it is not possible to list all the tables explicitly.

6. Conclusion

Many solutions have been proposed to the logical omniscience problem, differing as to the intuitions underlying the lack
of logical omniscience. There has been comparatively little work on comparing approaches. We have attempted to fill this
gap here, focusing on two aspects, expressiveness and pragmatics, for four popular approaches.

In comparing the expressive power of the approaches, we started with the well-known observation that the approaches
are equi-expressive in the propositional case. However, this observation is true only if we allow the agent not to consider
any world possible. If we require that at least one world be possible, then we get a difference in expressive power. This is
particularly relevant when we have probabilities, because there has to be at least one world over which to assign probability.
Indeed, when considering logical omniscience in the presence of probability, there can be quite significant differences in
expressive power between the approaches, particularly awareness and impossible worlds.

Considering the pragmatics of logical omniscience, we identified some guiding principles for choosing an approach to
model a situation, based on the source of the lack of logical omniscience in that situation. As we show, coming up with an
appropriate structure can be nontrivial. We illustrate a general approach to deriving an impossible-worlds structure based on
an implicit description of the situation, which seems to be appropriate for a number of situations of interest. Our discussion
suggests that the impossible-worlds approach may be particularly appropriate for representing an agent’s subjective view of
the world.
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