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Abstract. We describe a general logical framework, Justification Logic, for reasoning about
epistemic justification. Justification Logic is based on classical propositional logic augmented by
justification assertions t : F that read t is a justification for F. Justification Logic absorbs basic
principles originating from both mainstream epistemology and the mathematical theory of proofs.
It contributes to the studies of the well-known Justified True Belief vs. Knowledge problem. We state
a general Correspondence Theorem showing that behind each epistemic modal logic, there is a robust
system of justifications. This renders a new, evidence-based foundation for epistemic logic. As a case
study, we offer a resolution of the Goldman–Kripke ‘Red Barn’ paradox and analyze Russell’s ‘prime
minister example’ in Justification Logic. Furthermore, we formalize the well-known Gettier example
and reveal hidden assumptions and redundancies in Gettier’s reasoning.

§1. Introduction. The celebrated account of Knowledge as Justified True Belief com-
monly attributed to Plato (cf. Gettier, 1963; Hendricks, 2003) was widely accepted until
1963 when a paper by Gettier (1963) opened the door to a broad philosophical discussion
of the subject (cf. Dretske, 1971; Goldman, 1967; Lehrer & Paxson, 1969; Nozick, 1981;
Stalnaker, 1996, and many others).

Meanwhile, commencing from seminal works (Hintikka, 1962; von Wright, 1951), the
notions of Knowledge and Belief have acquired formalization by means of modal logic
with atoms KF (F is known) and BF (F is believed). Within this approach, the following
analysis was adopted: for a given agent,

F is known ∼ F holds in all epistemically possible situations. (1)

The resulting Epistemic Logic has been remarkably successful in terms of developing a
rich mathematical theory and applications (cf. Fagin et al., 1995; Meyer & van der Hoek,
1995, and other sources). However, the notion of justification, which has been an essential
component of epistemic studies, was conspicuously absent in the mathematical models
of knowledge within the epistemic logic framework. This deficiency is displayed most
prominently, in the Logical Omniscience defect of the modal logic of knowledge (cf.
Fagin & Halpern, 1985, 1988; Hintikka, 1975; Moses, 1998; Parikh, 1987). In the prov-
ability domain, the absence of an adequate description of the logic of justifications (here
mathematical proofs) remained an impediment to both formalizing the Brouwer–Heyting–
Kolmogorov semantics of proofs and providing a long-anticipated exact provability
semantics for Gödel’s provability logic S4 and intuitionistic logic (Artemov, 1999, 2001,
2007; van Dalen, 1986). This lack of a justification component has, perhaps, contributed
to a certain gap between epistemic logic and mainstream epistemology (Hendricks, 2003,
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2005). We would like to think that Justification Logic is a step toward filling this
void.

The contribution of this paper to epistemology can be briefly summarized as follows.

We describe basic logical principles for justifications and relate them to
both mainstream and formal epistemology. The result is a long-anticipated
mathematical notion of justification, making epistemic logic more
expressive. We now have the capacity to reason about justifications,
simple and compound. We can compare different pieces of evidence
pertaining to the same fact. We can measure the complexity of justifica-
tions, which leads to a coherent theory of logical omniscience. Justifica-
tion Logic provides a novel, evidence-based mechanism of truth-tracking
which seems to be a key ingredient of the analysis of knowledge. Finally,
Justification Logic furnishes a new, evidence-based foundation for the
logic of knowledge, according to which

F is known ∼ F has an adequate justification. (2)

There are several natural interpretations of Justification Logic. Justification assertions of
the format t:F read generically as

t is a justification of F. (3)

There is also a more strict ‘justificationist’ reading in which t:F is understood as

t is accepted by agent as a justification of F. (4)

The language and tools of Justification Logic accommodate both readings of t : F. More-
over, Justification Logic is general enough to incorporate other semantics that are not
necessarily terminologically related to justifications or proofs. For example, t : F can be
read as

t is a sufficient resource for F. (5)

Tudor Protopopescu suggests that t :F could also be assigned an externalist, nonjustifica-
tionist reading, something like

F satisfies conditions t . (6)

In this setting, t would be something like a set of causes or counterfactuals. Such a reading
would still maintain the distinction between partial and factive justifications, since t may
not be all that is required for belief that F to count as knowledge that F.

Within Justification Logic, we do not directly analyze what it means for t to justify F
beyond the format t:F , but rather attempt to characterize this relation axiomatically. This is
similar to the way Boolean logic treats its connectives, say, disjunction: it does not analyze
the formula p ∨ q but rather assumes certain logical axioms and truth tables about this
formula.

There are several design decisions made for this installment of Justification Logic.

1. We decide to limit our attention, at this stage, to propositional and quantifier-free
systems of Justification Logic, and leave quantified systems for further study.

2. We build our systems on the simplest base: classical Boolean logic, though we are
completely aware that there are much more elaborate logical models, for example,
intuitionistic and substructural logics, conditionals, relevance logics, and logics of
counterfactual reasoning, just to name a few. There are several good reasons for
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choosing the Boolean logic base here. At this stage, we are concerned first with
justifications, which provide a sufficiently serious challenge on even the simplest
Boolean base. Once this case is sorted out in a satisfactory way, we can move on
to incorporating justifications into other logics. Second, the paradigmatic examples
which we will consider (e.g., Goldman–Kripke and Gettier), can be handled with
Boolean Justification Logic. Third, the core of Epistemic Logic consists of modal
systems with a classical Boolean base (K, T, K4, S4, K45, KD45, S5, etc.). We
provide each of them with a corresponding Justification Logic companion based on
Boolean logic.

3. Within the Justification Logic framework, we treat both partial and factive jus-
tifications. This helps to capture the essence of discussion on these matters in
epistemology, where justifications are not generally assumed to be factive.

4. In this paper, we consider the case of one agent only, although several multiagent
Justification Logic systems have already been developed (Artemov, 2006; Artemov
& Nogina, 2005; Yavorskaya, 2006).

Formal logical methods do not directly solve philosophical problems, but rather provide
a tool for analyzing assumptions and to ensure that we draw correct conclusions. Our hope
is that Justification Logic will do just that.

§2. Preliminary analysis of principles involved. In this section, we will survey the
Logic of Proofs, Gettier’s examples (Gettier, 1963), and examine some classical post-
Gettier sources to determine what logical principles in the given Justification Logic format
(propositional Boolean logic with justification assertions t : F) may be extracted. As is
usual with converting informally stated principles into formal ones, a certain amount of
good will is required. This does not at all mean that the considerations adduced in Dretske
(1971), Goldman (1967), Lehrer & Paxson (1969), Nozick (1981), and Stalnaker (1996)
may be readily formulated in the Boolean Justification Logic. The aforementioned papers
are written in natural language, which is richer than any formal one; a more sophisticated
formal language could probably provide a better account here, which we leave to future
studies.

2.1. The logic of proofs. The Logic of Proofs LP was suggested by Gödel (1995)
and developed in full in Artemov (1995, 2001). LP gives a complete axiomatization of
the notion of mathematical proof with natural operations ‘application,’ ‘sum,’ and ‘proof
checker.’ We discuss these operations below in a more general epistemic setting.

In LP, justifications are represented by proof polynomials, which are terms built from
proof variables x, y, z, . . . and proof constants a, b, c, . . . by means of two binary opera-
tions: application ‘·’ and sum (union, choice) ‘+,’ and one unary operation proof checker ‘!’.
The formulas of LP are those of propositional classical logic augmented by the formation
rule: if t is a proof polynomial and F a formula, then t:F is again a formula.

The Logic of Proofs LP contains the postulates of classical propositional logic and the
rule of Modus Ponens along with

s:(F →G) → (t:F →(s ·t):G) (Application)
s:F →(s+t):F , t:F →(s+t):F (Sum)
t:F →!t:(t:F) (Proof Checker)
t:F → F (Reflection).
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Proof constants in LP represent ‘atomic’ proofs of axioms which are not analyzed any
further. In addition to the usual logical properties, such as being closed under substitution
and respecting the Deduction Theorem, LP enjoys the Internalization property:

If � F, then there is a proof polynomial p such that � p:F.

2.2. Gettier examples. Gettier (1963) described two situations, Case I and Case II, that
were supposed to provide examples of justified true beliefs which should not be considered
knowledge. In this paper we will focus on formalizing Case I, which proved to be more
challenging. Case II can be easily formalized in a similar fashion.

Here is a shortened exposition of Case I from Gettier (1963).
Suppose that Smith and Jones have applied for a certain job. And suppose that Smith

has strong evidence for the following conjunctive proposition:
(d) Jones is the man who will get the job, and Jones has ten coins in his pocket.

Proposition (d) entails:
(e) The man who will get the job has ten coins in his pocket.

Let us suppose that Smith sees the entailment from (d) to (e), and accepts (e) on the grounds
of (d), for which he has strong evidence. In this case, Smith is clearly justified in believing
that (e) is true. But imagine, further, that unknown to Smith, he himself, not Jones, will get
the job. And, also, unknown to Smith, he himself has ten coins in his pocket. Then, all of
the following are true:

1) (e) is true,

2) Smith believes that (e) is true, and

3) Smith is justified in believing that (e) is true.
But it is equally clear that Smith does not know that (e) is true. . ..

Gettier uses a version of the epistemic closure principle, closure of justification under
logical consequence:

. . . if Smith is justified in believing P, . . . and Smith deduces Q from P

. . ., then Smith is justified in believing Q.

Here is its natural formalization:
Smith is justified in believing P can be formalized as “for some t , t:P”;
Smith deduces Q from P—“there is a deduction of P → Q (available to Smith)”;
Smith is justified in believing Q—“t:Q for some t .”
Such a rule holds for the Logic of Proofs, as well as for all other Justification Logic systems
considered in this paper. It is a combination of the Internalization Rule:

if � F, then � s:F for some s (7)

and the Application Axiom:

s:(P → Q)→(t:P →(s ·t):Q). (8)

Indeed, suppose t : P and there is a deduction of P → Q. By the Internalization Rule,
s : (P → Q) for some s. From the Application Axiom, by Modus Ponens twice, we get
(s ·t):Q.

2.3. Goldman’s reliabilism. Goldman (1967) offered the ‘fourth condition’ to be added
to the Justified True Belief definition of knowledge. According to Goldman (1967),
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a subject’s belief is justified only if the truth of a belief has caused the
subject to have that belief (in the appropriate way), and for a justified
true belief to count as knowledge, the subject must also be able to cor-
rectly reconstruct (mentally) that causal chain.

Goldman’s principle makes it clear that a justified belief (in our language, a situation t
justifies F for some t) for an agent occurs only if F is true, which provides the Factivity
Axiom for ‘knowledge-producing’ justifications

t:F → F (Factivity Axiom). (9)

The Factivity Axiom is assumed for factive justifications (systems JT, LP, JT45 below)
but not for general justification systems J, J4, J45, JD45.

With a certain amount of good will, we can assume that the ‘causal chain’ leading from
the truth of F to a justified belief that F manifests itself in the Principle of Internalization
which holds for many Justification Logic systems:

If F is valid, then one could construct a justification p such that p:F is valid. (10)

Internalization is usually represented in an equivalent form (in the presence of the Com-
pleteness Theorem) as a meta-rule (7). The algorithm which builds a justified belief p:F
from a strong evidence (proof) of the validity of F seems to be an instance of Goldman’s
‘causal chain.’

2.4. Lehrer and Paxson’s indefeasibility condition. Lehrer & Paxson (1969) offered
the following ‘indefeasibility condition’:

there is no further truth which, had the subject known it, would have
defeated [subject’s] present justification for the belief.

The ‘further truth’ here could refer to a possible update of the subject’s database, or
some possible-worlds situation, and so forth: these readings lie outside the scope of our
language of Boolean Justification Logic. A natural reading of ‘further truth’ in our setting
could be ‘other postulate or assumption of the system,’ which means a simple consistency
property which vacuously holds for all Justification Logic systems considered here. An-
other plausible reading of ‘further truth’ could be ‘further evidence,’ and we assume this
particular reading here. Since there is no temporal or update component in our language
yet, ‘any further evidence’ could be understood for now as ‘any other justification,’ or just
‘any justification.’

Furthermore, Lehrer and Paxson’s condition seems to involve a negation of an existential
quantifier over justifications ‘there is no further truth . . .,’ or

there is no justification. . ..

However, within the classical logic tradition, we can read this as a universal quantifier over
justifications followed by a negation

for any further evidence, it is not the case. . ..

Denoting ‘present justification for the belief’ as the assertion s:F , we reformulate Lehrer–
Paxson’s condition as

given s:F, for any evidence t, it is not the case that t would have defeated s:F.

The next step is to formalize ‘t does not defeat s : F .’ This informal statement seems to
suggest an implication
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if s:F holds, then the joint evidence of s and t, which we denote here as
s + t , is also an evidence for F, that is, (s + t):F holds.

Here is the resulting formal version of Lehrer–Paxson’s condition: for any proposition
F and any justifications s and t , the following holds

s:F →(s + t):F (Monotonicity Axiom). (11)

2.5. Further assumptions. In order to build a formal account of justification, we will
make some basic structural assumptions: justifications are abstract objects which have
structure, operations on justifications are potentially executable, agents do not lose or
forget justifications, agents apply the laws of classical logic and accept their conclusions,
and so forth.

In the following, we consider both: justifications, which do not necessarily yield the
truth of a belief, and factive justifications, which yield the truth of the belief.

§3. Basic principles and systems.
3.1. Application. The Application operation takes justifications s and t and produces

a justification s · t such that if s:(F →G) and t:F , then (s ·t):G. Symbolically,

s:(F →G)→(t:F →(s ·t):G). (12)

This is a basic property of justifications assumed in combinatory logic and λ-calculi
(cf. Troelstra & Schwichtenberg, 1996), BHK-semantics (Troelstra & van Dalen, 1988),
Kleene realizability (Kleene, 1945), the Logic of Proofs LP (Artemov, 2001), and so forth.
Application Principle (12) is related to the epistemological closure principle (cf., e.g.,
Dretske, 2005; Luper, 2005) that one knows everything that one knows to be implied by
what one knows. However, (12) does not rely on this closure principle, since (12) deals
with a broader spectrum of justifications, not necessarily linked to knowledge.

Note that the epistemological closure principle which could be formalized using the
knowledge modality K as

K(F →G)→(KF →KG), (13)

smuggles the logical omniscience defect into modal epistemic logic. The latter does not
have the capacity to measure how hard it is to attain knowledge (Fagin & Halpern, 1985,
1988; Hintikka, 1975; Moses, 1998; Parikh, 1987). Justification Logic provides natural
means of escaping logical omniscience by keeping track of the size of justification terms
(Artemov & Kuznets, 2006).

3.2. Monotonicity of justification. The Monotonicity property of justification has been
expressed by the operation sum ‘+,’ which can be read from (11). If s:F , then whichever
evidence t occurs, the combined evidence s + t remains a justification for F. Operation
‘+’ takes justifications s and t and produces s + t , which is a justification for everything
justified by s or by t .

s:F →(s + t):F and s:F →(t + s):F.

A similar operation ‘+’ is present in the Logic of Proofs LP, where the sum ‘s + t’ can be
interpreted as a concatenation of proofs s and t .

Correspondence Theorem 8.1 uses Monotonicity to connect Justification Logic with
epistemic modal logic. However, it is an intriguing challenge to develop a theory of non-
monotonic justifications which prompt belief revision. Some Justification Logic systems
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without Monotonicity have been studied in Artemov & Strassen (1993) and Krupski (2001,
2006).

3.3. Basic justification logic J0. Justification terms (polynomials) are built from jus-
tification variables x, y, z, . . . and justification constants a, b, c, . . . (with indices i =
1, 2, 3 . . . which we will be omitting whenever it is safe) by means of the operations
application ‘·’ and sum ‘+’.1 Constants denote atomic justifications which the system
no longer analyzes; variables denote unspecified justifications.
Basic Logic of Justifications J0:

A1. Classical propositional axioms and rule Modus Ponens,

A2. Application Axiom s:(F →G)→(t:F →(s · t):G),

A3. Monotonicity Axiom s:F →(s + t):F, s:F →(t + s):F.

J0 is the logic of general (not necessarily factive) justifications for an absolutely skepti-
cal agent for whom no formula is provably justified, that is, J0 does not derive t:F for any
t and F . Such an agent is, however, capable of making relative justification conclusions of
the form

if x:A, y:B, . . ., z:C hold, then t:F.

J0 is able, with this capacity, to adequately emulate other Justification Logic systems in its
language.

3.4. Logical awareness and constant specifications. The Logical Awareness principle
states that logical axioms are justified ex officio: an agent accepts logical axioms (including
the ones concerning justifications) as justified. As stated here, Logical Awareness is too
restrictive and Justification Logic offers a flexible mechanism of Constant Specifications
to represent all shades of logical awareness.

Justification Logic distinguishes between an assumption and a justified assumption.
Constants are used to denote justifications of assumptions in situations when we don’t
analyze these justifications any further. Suppose we want to postulate that an axiom A is
justified for a given agent. The way to say it in Justification Logic is to postulate

e1:A

for some evidence constant e1 with index 1. Furthermore, if we want to postulate that this
new principle e1:A is also justified, we can postulate

e2:(e1:A)

for the similar constant e2 with index 2, and so forth. Keeping track of indices is not
necessary, but it is easy and helps in decision procedures (cf. Kuznets, 2008). The set of
all assumptions of this kind for a given logic is called a Constant Specification. Here is a
formal definition.

A Constant Specification CS for a given logic L is a set of formulas

en :en−1 : . . . :e1 : A (n ≥ 1),

where A is an axiom of L, and e1, e2, . . . , en are similar constants with indices 1, 2, . . . , n.
We also assume that CS contains all intermediate specifications, that is, whenever en :en−1 :

1 More elaborate models considered below in this paper also use additional operations on
justifications, for example, verifier ‘!’ and negative verifier ‘?’.
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. . . : e1 : A is in CS, then en−1 : . . . : e1 : A is in CS too. In this paper, we will distinguish the
following types of constant specifications:

• empty: CS = ∅. This corresponds to an absolutely skeptical agent (cf. a comment
after axioms of J0).

• finite: CS is a finite set of formulas. This is a representative case, since any specific
derivation in Justification Logic concerns only finite sets of constants and constant
specifications.

• axiomatically appropriate: for each axiom A there is a constant e1 such that e1:A
is in CS, and if

en :en−1 : . . . :e1 : A ∈ CS,

then

en+1 :en :en−1 : . . . :e1 : A ∈ CS.

Axiomatically appropriate CS’s are necessary for ensuring the Internalization prop-
erty.

• total: for each axiom A and any constants e1, e2, . . . , en ,

en :en−1 : . . . :e1 : A ∈ CS.

We are reserving the name TCS for the total constant specification (for a given
logic). Naturally, the total constant specification is axiomatically appropriate.

Logic of Justifications with given Constant Specification

JCS = J0 + CS.

Logic of Justifications

J = J0 + R4,

where R4 is the Axiom Internalization Rule:

For each axiom A and any constants e1, e2, . . . , en, infer en :en−1 : . . . :e1 : A.

Note that J0 is J∅, and J coincides with JTCS . The latter reflects the idea of the unrestricted
Logical Awareness for J. A similar principle appeared in the Logic of Proofs LP; it has
also been anticipated in Goldman (1967). Note that any specific derivation in J may be
regarded as a derivation in JCS for a corresponding finite constant specification CS, hence
finite CS’s constitute an important representative class of constant specifications.

Logical Awareness expressed by axiomatically appropriate constant specifications is an
explicit incarnation of the Necessitation Rule in modal epistemic logic:

� F ⇒ � KF (14)

applied to axioms.
Let us consider some basic examples of derivations in J. In Examples 3.1 and 3.2, only

constants of Level 1 have been used; in such situations we skip indices completely.

EXAMPLE 3.1. This example shows how to build a justification of a conjunction from
justifications of the conjuncts. In the traditional modal language, this principle is formal-
ized as

2A ∧2B →2(A ∧ B).

In J we express this idea in a more precise justification language.

1. A→(B →(A∧B)), a propositional axiom;
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2. c:[A→(B →(A∧B))], from 1, by R4;

3. x:A→(c·x):(B →(A∧B)), from 2, by A2 and Modus Ponens;

4. x:A→(y:B →((c·x)·y):(A∧B)), from 3, by A2 and some propositional reasoning;

5. x:A∧y:B →((c·x)·y):(A∧B), from 5, by propositional reasoning.

The derived formula 5 contains constant c, which was introduced in line 2, and the com-
plete reading of the result of this derivation is

x:A∧y:B →((c·x)·y):(A∧B), given c:[A→(B →(A∧B))].

EXAMPLE 3.2. This example shows how to build a justification of a disjunction from
justifications of either of the disjuncts. In the usual modal language this is represented by

2A ∨2B →2(A ∨ B).

Let us see how this would look in J.

1. A→(A∨B), by A1;

2. a:[A→(A∨B)], from 1, by R4;

3. x:A→(a ·x):(A∨B), from 2, by A2 and Modus Ponens;

4. B →(A∨B), by A1;

5. b:[B →(A∨B)], from 4, by R4;

6. y:B →(b·y):(A∨B) from 5, by A2 and Modus Ponens;

7. (a ·x):(A∨B)→(a ·x+b·y):(A∨B), by A3;

8. (b·y):(A∨B)→(a ·x+b·y):(A∨B), by A3;

9. (x:A∨y:B)→(a ·x+b·y):(A∨B) from 3, 6, 7, 8, by propositional reasoning.

The complete reading of the result of this derivation is

(x:A∨y:B)→(a ·x+b·y):(A∨B), given a:[A→(A∨B)] and b:[B →(A∨B)].

Explicit mention of Constant Specifications of Justification Logic systems is normally
used when semantic issues are concerned: for example, arithmetical, symbolic, and epis-
temic semantics. To define the truth value of a formula under a given interpretation, one
should be given a specification of constants involved.

For each constant specification CS, JCS enjoys the Deduction Theorem, because J0
contains propositional axioms and Modus Ponens as the only rule of inference.

THEOREM 3.3. For each axiomatically appropriate constant specification CS, JCS en-
joys Internalization:

If � F, then � p:F for some justification term p.

Proof. Induction on derivation length. Suppose � F . If F is an axiom, then, since CS
is axiomatically appropriate, there is a constant e such that e:F is in CS, hence an axiom
of JCS . If F is in CS, then, since CS is axiomatically appropriate, e:F is in CS for some
constant e. If F is obtained by Modus Ponens from X → F and X , then, by the Induction
Hypothesis, � s:(X → F) and � t:X for some s, t . By the Application Axiom, � (s ·t):F .
Note that Internalization can require a growth of constant specification sets; if � F with a
Constant Specification CS, then the proof of p:F may need some Constant Specification
CS′ which is different from CS. �
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§4. Red Barn Example and tracking justifications. We begin illustrating new ca-
pabilities of Justification Logic with a paradigmatic Red Barn Example which Kripke
developed in 1980 in objection to Nozick’s account of knowledge (cf. article The Epistemic
Closure Principle in Stanford Encyclopedia of Philosophy (Luper, 2005), from which we
borrow the formulation, with some editing for brevity).

Suppose I am driving through a neighborhood in which, unbeknownst to
me, papier-mâché barns are scattered, and I see that the object in front of
me is a barn. Because I have barn-before-me percepts, I believe that the
object in front of me is a barn. Our intuitions suggest that I fail to know
barn. But now suppose that the neighborhood has no fake red barns, and
I also notice that the object in front of me is red, so I know a red barn
is there. This juxtaposition, being a red barn, which I know, entails there
being a barn, which I do not, “is an embarrassment”.2

We proceed in the spirit of the Red Barn Example and consider it a general test for theories
that explain knowledge. What we want is a way to represent what is going on here which
maintains epistemic closure,

one knows everything that one knows to be implied by what one knows, (15)

but also preserves the problems the example was intended to illustrate.
We present plausible formal analysis of the Red Barn Example in epistemic modal logic

(Subsections 4.1 and 4.2) and in Justification Logic (Subsections 4.3 and 4.4). We will see
that epistemic modal logic is capable only of telling us that there is a problem, whereas
Justification Logic helps to analyze what has gone wrong. We see that closure holds as it is
supposed to, and we see that if we keep track of justifications we can analyse why we had
a problem.

4.1. Red Barn in modal logic of belief. In our first formalization, the logical derivation
will be made in epistemic modal logic with ‘my belief’ modality2. We then interpret some
of the occurrences of 2 as ‘knowledge’ according to the problem’s description. We will
not try to capture the whole scenario formally; to make our point, it suffices to formalize
and verify its “entailment” part. Let

• B be ‘the object in front of me is a barn,’
• R be ‘the object in front of me is red,’
• 2 be ‘my belief’ modality.

The formulation considers observations ‘I see a barn’ and ‘I see a red barn,’ and claims
logical dependencies between them. The following is a natural formalization of these
assumptions in the epistemic modal logic of belief:

1. 2B, ‘I believe that the object in front of me is a barn’;

2. 2(B∧R), ‘I believe that the object in front of me is a red barn.’

At the metalevel, we assume that 2 is knowledge, whereas 1 is not knowledge by the
problem’s description. So, we could add factivity of 2, 2(B∧R)→ (B∧R), to the formal
description, but this would not matter for our conclusions. We note that indeed 1 logically
follows from 2 in the modal logic of belief K:

2 Dretske (2005).
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3. (B∧R)→ B, logical axiom;

4. 2[(B ∧ R) → B], from 3, by Necessitation. As a logical truth, this is a case of
knowledge too;

5. 2(B∧R)→2B, from 4, by modal logic.

Within this formalization, it appears that Closure Principle (15) is violated: 2(B ∧ R) is
knowledge by the problem’s description, 2[(B∧R)→ B] is knowledge as a simple logical
axiom, whereas 2B is not knowledge.

4.2. Red Barn in modal logic of knowledge. Now we will use epistemic modal logic
with ‘my knowledge’ modality K. Here is a straightforward formalization of Red Barn
Example assumptions:

1. ¬KB, ‘I do not know that the object in front of me is a barn’;

2. K(B∧R), ‘I know that the object in front of me is a red barn.’

It is easy to see that these assumptions are inconsistent in the modal logic of knowledge.
Indeed,

3. K(B∧R)→(KB∧KR), by normal modal logic;

4. KB∧KR, from 2 and 3, by Modus Ponens;

5. KB, from 4, by propositional logic.

Lines 1 and 5 formally contradict each other.
Modal logic of knowledge does not seem to apply here.

4.3. Red barn in justification logic of belief. Justification Logic seems to provide a
more fine-grained analysis of the Red Barn Example. We naturally refine assumptions by
introducing individual justifications u for belief that B, and v for belief that B∧R. The set
of assumptions in the Justification Logic is

1. u:B, ‘u is the reason to believe that the object in front of me is a barn’;

2. v:(B∧R), ‘v is the reason to believe that the object in front of me is a red barn.’ On
the metalevel, the description states that this is a case of knowledge, not merely a
belief.

Again, we can add the factivity condition for 2, v : (B ∧ R) → (B ∧ R), but this
does not change the analysis here. Let us try to reconstruct the reasoning of the agent
in J:

3. (B∧R)→ B, logical axiom;

4. a : [(B ∧ R) → B], from 3, by Axiom Internalization. This is also knowledge, as
before;

5. v:(B∧R)→(a ·v):B, from 4, by Application and Modus Ponens;

6. (a ·v):B, from 2 and 5, by Modus Ponens.

Closure holds! Instead of deriving 1 from 2 as in Section 4.1, we have obtained a correct
conclusion that (a ·v):B, that is, ‘I know B for reason a ·v ,’ which seems to be different
from u: the latter is the result of a perceptual observation, whereas the former is the result
of logical reasoning. In particular, we cannot conclude that 2, v :(B ∧ R), entails 1, u : B;
moreover, with some basic model theory of J in Section 5, we can show that 2 does not
entail 1. Hence, after observing a red façade, I indeed know B, but this knowledge does
not come from 1, which remains a case of belief rather than of knowledge.



488 SERGEI ARTEMOV

4.4. Red Barn in justification Logic of knowledge. Within this formalization, t :F is
interpreted as

‘I know F for reason t .’

As in Section 4.2, we assume

1. ¬u:B, ‘u is not a sufficient reason to know that the object is a barn’;

2. v:(B∧R), ‘v is a sufficient reason to know that the object is a red barn.’

This is a perfectly consistent set of assumptions in the logic of factive justifications

J + Factivity Principle (t:F → F).

As in Section 4.3, we can derive (a ·v):B where a:[(B ∧ R) → B], but this does not lead
to a contradiction. Claims ¬u : B and (a ·v) : B naturally coexist. They refer to different
justifications u and a ·v of the same fact B; one of them insufficient and the other quite
sufficient for my knowledge that B.

It appears that in Section 4.3 and 4.4, Justification Logic represents the structure of
the argument made by Kripke in his Red Barn Example, and which was not captured by
traditional epistemic modal tools. The Justification Logic formalization represents what
seems to be happening in such a case; we can maintain closure of knowledge under logical
entailment, even though ‘barn’ is not perceptually known.

In all fairness to modal tools, we could imagine a formalization of the Red Barn ex-
ample in a sort of bi-modal language with distinct modalities for knowledge and belief.
However, it seems that such a resolution will, intellectually, involve repeating Justification
Logic arguments in a way that obscures, rather than reveals, the truth. Such a bi-modal
formalization would distinguish u:B from (a ·v): B not because they have different reasons
(which reflects the true epistemic structure of the problem), but rather because the former
is labelled ‘belief’ and the latter ‘knowledge.’ But what if we need to keep track of a larger
number of different unrelated reasons? By introducing a number of distinct modalities
and then imposing various assumptions governing the inter-relationships between these
modalities, one would essentially end up with a reformulation of the language of Justifi-
cation Logic itself (with distinct terms replaced by distinct modalities). This suggests that
there may not really be a ‘halfway point’ between the modal language and the language
of Justification Logic, at least inasmuch as one tries to capture the essential structure of
examples involving the deductive failure of knowledge (e.g., Kripke’s Red Barn example).
Accordingly, one is either stuck with modal logic and its inferior account of these examples
or else moves to Justification Logic and its superior account of these examples. This move
can either come about by taking a multi-modal language and imposing inter-dependencies
on different modals—ending up with something essentially equivalent to the language of
Justification Logic—or else one can use the language of Justification Logic from the start.
Either way, all there is to move to is Justification Logic.

§5. Basic epistemic semantics. The standard epistemic semantics for J has been pro-
vided by the proper adaptation of Kripke–Fitting models (Fitting, 2005) and Mkrtychev
models (Mkrtychev, 1997).

A Kripke–Fitting J-model M = (W, R, E, �) is a Kripke model (W, R, �) enriched
with an admissible evidence function E such that E(t, F) ⊆ W for any justification t and
formula F . Informally, E(t, F) specifies the set of possible worlds where t is considered
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admissible evidence for F . The intended use of E is in the truth definition for justification
assertions:

u � t:F if and only if

1. F holds for all possible situations, that is, v�F for all v such that u Rv;

2. t is an admissible evidence for F at u, that is, u ∈ E(t, F).

An admissible evidence function E must satisfy the closure conditions with respect to
operations ‘·’ and ‘+’:

• Application: E(s, F → G) ∩ E(t, F) ⊆ E(s · t, G). This condition states that
whenever s is an admissible evidence for F → G and t is an admissible evidence
for F , their ‘product,’ s ·t , is an admissible evidence for G.

• Sum: E(s, F) ∪ E(t, F) ⊆ E(s + t, F). This condition guarantees that s + t is an
admissible evidence for F whenever either s is admissible for F or t is admissible
for F .

These are natural conditions to place on E because they are necessary for making basic
axioms of Application and Monotonicity valid.

We say that E(t, F) holds at a given world u if u ∈ E(t, F).
Given a model M = (W, R, E, �), the forcing relation � is extended from sentence

variables to all formulas as follows: for each u ∈ W,

1. � respects Boolean connectives at each world (u � F ∧ G iff u � F and u � G;
u�¬F iff u ��F , etc.);

2. u� t:F iff u ∈ E(t, F) and v�F for every v ∈ W with u Rv .

Note that an admissible evidence function E may be regarded as a Fagin–Halpern aware-
ness function (Fagin et al., 1995) equipped with the structure of justifications.

A model M = (W, R, E, �) respects a Constant Specification CS at u ∈ W if u ∈
E(c, A) for all formulas c:A from CS. Furthermore,M = (W, R, E,�) respects a Constant
Specification CS ifM respects CS at each u ∈ W.

THEOREM 5.1. For any Constant Specification CS, JCS is sound and complete for the
class of all Kripke–Fitting models respecting CS.

Proof.
Fix a Constant Specification CS and consider JCS .
Soundness is straightforward. Induction on derivations in JCS . Let us check the axioms.
Application. Suppose u � s :(F → G) and u � t :F . Then, by the definition of forcing,

u ∈ E(s, F → G) and u ∈ E(t, F), hence, by the closure condition for E , u ∈ E(s ·t, G).
Moreover, for each v such that u Rv , v� F →G and v� F , hence v�G. Thus u� (s ·t):G
and u�s:(F →G)→(t:F →(s ·t):G).

Sum. Suppose u � t : F . Then u ∈ E(t, F), hence, by the closure condition for E ,
u ∈ E(s + t, F). In addition, v � F for each v such that u Rv , hence u � (s + t):F . Thus
u� t:F →(s+t):F .

Axioms from CS hold at each world, since the models respect CS. The Induction Step
corresponds to the use of Modus Ponens, which is clearly a sound rule here.

To establish completeness, we use standard canonical model construction. The canonical
modelM = (W, R, E, �) for JCS is defined as follows:

• W is the set of all maximal consistent sets in JCS . Following an established tradi-
tion, we denote elements of W as �,�, and so forth;
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• �R� iff �� ⊆ �, where �� = {F | t:F ∈ � for some t};
• E(s, F) = {� ∈ W | s:F ∈ �};
• �� p iff p ∈ �.

The Truth Lemma claims that for all F’s,

��F if and only if F ∈ �.

This is established by standard induction on the complexity of F . The atomic cases are
covered by the definition of ‘� .’ The Boolean induction steps are standard. Consider the
case when F is t:G for some t and G.

If t:G ∈ �, then G ∈ � for all � such that �R� by the definition of R. By the Induction
Hypothesis, ��G. In addition, � ∈ E(t, G) by the definition of E . Hence �� t:G, that is,
��F .

If t:G �∈ �, then � �∈ E(t, G), that is, � �� t:G and � ��F .
Furthermore,M respects CS at each node. Indeed, by the construction ofM, CS ⊆ �

for each � ∈ W . By the Truth Lemma, ��c:A for each c:A ∈ CS.

The conclusion of the proof of Theorem 5.1 is standard. Let F be not derivable in JCS . Then
the set {¬F} is consistent. Using the standard saturation construction (Fagin et al., 1995;
Meyer & van der Hoek, 1995), extend {¬F} to a maximal consistent set �. By consistency,
F �∈ �. By the Truth Lemma, � ��F . �

There are several features of the canonical model which could be included into the
formulation of the Completeness Theorem to make it stronger.

Strong Evidence. We can show that the canonical model considered in this proof satisfies
the Strong Evidence property

� ∈ E(t, F) implies �� t:F.

Indeed, let � ∈ E(t, F). By the definition of E , t :F ∈ �, hence F ∈ �� and F ∈ � for
each � such that �R�. By the Truth Lemma, �� F , hence �� t:F . In a model with the
Strong Evidence property there are no void or irrelevant justifications; if t is an admissible
evidence for F , then t is a ‘real evidence’ for F , that is, F holds at all possible worlds.

Fully Explanatory property for axiomatically appropriate Constant Specifications:

If ��F for all � such that �R�, then �� t:F for some t.

Note that for axiomatically appropriate constant specifications CS, the Internalization prop-
erty holds: if G is provable in JCS , then t :G is also provable there for some term t . Here
is the proof of the Fully Explanatory property for canonical models.3 Suppose � �� t : F
for any justification term t . Then the set �� ∪ {¬F} is consistent. Indeed, otherwise for
some t1 : X1, t2 : X2, . . . , tn : Xn ∈ �, X1 → (X2 → . . . → (Xn → F) . . .) is provable. By
Internalization, there is a justification s such that s:(X1 → (X2 → . . .→ (Xn → F) . . .)) is
also provable. By Application, t1:X1 → (t2:X2 → . . .→ (tn:Xn → (s ·t1 ·t2 ·. . .·tn):F) . . .)
is provable, hence � � t:F for t = s · t1 · t2 · . . . · tn . Therefore, �� t:F—a contradiction.
Let � be a maximal consistent set extending �� ∪ {¬F}. By the definition of R, �R�, by
the Truth Lemma, � ��F , which contradicts the assumptions.

Mkrtychev semantics is a predecessor of Kripke–Fitting semantics (Mkrtychev, 1997).
Mrktychev models are Kripke–Fitting models with a single world, and the proof of

3 This proof for LP was offered by Fitting (2005).
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Theorem 5.1 can be easily modified to establish completeness of JCS with respect to
Mkrtychev models.

THEOREM 5.2. For any Constant Specification CS, JCS is sound and complete for the
class of Mrktychev models respecting CS.

Proof. Soundness follows immediately from Theorem 5.1. For completeness, define
the canonical model as in Theorem 5.1 except for R, which should be taken empty. This
assumption makes the condition ‘�� F for all � such that �R�’ vacuously true, and the
forcing condition for justification assertions � � t :F becomes equivalent to � ∈ E(t, F),
that is, t:F ∈ �. This simplification immediately verifies the Truth Lemma.

The conclusion of the proof of Theorem 5.2 is standard. Let F be not derivable in JCS .
Then the set {¬F} is consistent. Using the standard saturation construction, extend it to a
maximal consistent set � containing ¬F . By consistency, F �∈ �. By the Truth Lemma,
� �� F . The Mkrtychev model consisting of this particular � is the desired counter-model
for F . The rest of the canonical model is irrelevant. �

Note that Mkrtychev models built in Theorem 5.2 are not reflexive, and possess the
Strong Evidence property. On the other hand, such Mkrtychev models cannot be Fully
Explanatory, since ‘��F for all � such that �R�’ is vacuously true, but �� t:F is not.

Theorem 5.2 shows that the information about Kripke structure in Kripke–Fitting models
can be completely encoded by the admissible evidence function. Mkrtychev models play
an important theoretical role in Justification Logic (Artemov, 2008; Brezhnev & Kuznets,
2006; Krupski, 2006; Kuznets, 2000; Milnikel, 2007). On the other hand, as we will see in
Section 10, Kripke–Fitting models can be useful as counter-models with desired properties
since they take into account both epistemic Kripke structure and evidence structure. Speak-
ing metaphorically, Kripke–Fitting models naturally reflect two reasons why a certain fact
F can be unknown to an agent: F fails at some possible world or an agent does not have a
sufficient evidence of F .

Another application area of Kripke–Fitting style models is Justification Logic with both
epistemic modalities and justification assertions (cf. Artemov, 2006; Artemov & Nogina,
2005).

COROLLARY 5.3 (Model existence). For any constant specification CS, JCS is consis-
tent and has a model.

Proof. JCS is consistent. Indeed, suppose JCS proves ⊥, and erase all justification terms
(with ‘:’s) in each of its formulas. What remains is a chain of propositional formulas
provable in classical logic (an easy induction on the length of the original proof) ending
with ⊥ – contradiction.

To build a model for JCS , use the Completeness Theorem (Theorem 5.1). Since JCS does
not prove ⊥, by Completeness, there is a JCS-model (where ⊥ is false, of course). �

§6. Factivity. Unlike Application and Monotonicity, Factivity of justifications is not
required in basic Justification Logic systems, which makes the latter capable of represent-
ing both partial and factive justifications.

Factivity states that justifications of F are factive, that is, sufficient for an agent to
conclude that F is true. This yields the Factivity Axiom

t:F → F, (16)
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which has a similar motivation to the Truth Axiom in epistemic modal logic

KF → F, (17)

widely accepted as a basic property of knowledge (Plato, Wittgenstein, Hintikka, etc.).
The Factivity Axiom (16) first appeared in the Logic of Proofs LP as a principal feature

of mathematical proofs. Indeed, in this setting (16) is valid: if there is a mathematical proof
t of F , then F must be true.

We adopt the Factivity Axiom (16) for justifications that lead to knowledge. However,
factivity alone does not warrant knowledge, which has been demonstrated by Russell and
Gettier examples (Russell, 1912; Gettier, 1963).

Logic of factive justifications:

JT0 = J0 + A4,

JT = J + A4,

with

A4. Factivity Axiom t:F → F .

Systems JTCS corresponding to Constant Specifications CS are defined as in Section 3.4.
JT-models are J-models with reflexive accessibility relations R. The reflexivity condi-

tion makes each possible world accessible from itself which exactly corresponds to the
Factivity Axiom. The direct analogue of Theorem 3.3 holds for JTCS as well.

THEOREM 6.1. For any Constant Specification CS, each of the logics JTCS is sound
and complete with respect to the class of JT-models respecting CS.

Proof. We now proceed as in the proof of Theorem 5.1. The only addition to soundness is
establishing that the Factivity Axiom holds in reflexive models. Let R be reflexive. Suppose
u� t:F . Then v�F for all v such that u Rv . By reflexivity of R, u Ru, hence u�F as well.

For completeness, it suffices to check that R in the canonical model is reflexive. Indeed,
if s:F ∈ �, then, by the properties of the maximal consistent sets, F ∈ � as well, since JT
derives s:F → F (with any CS). Hence �� ⊆ � and �R�. �

Mkrtychev JT-models are singleton JT-models, that is, JT-models with singleton W ’s.

THEOREM 6.2. For any Constant Specification CS, each of the logics JTCS is sound
and complete with respect to the class of Mkrtychev JT-models respecting CS.

Proof. Soundness follows from Theorem 6.1. For completeness, we follow the footprints
of Theorem 5.1, Theorem 5.2, but define the accessibility relation R as

�R� iff � = �.

�
6.1. Russell’s example: induced factivity. Here is Russell’s well-known example from

(Russell, 1912) of an epistemic scenario which can be meaningfully analyzed in Justifica-
tion Logic.

If a man believes that the late Prime Minister’s last name began with a
‘B,’ he believes what is true, since the late Prime Minister was Sir Henry
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Campbell Bannerman.4 But if he believes that Mr. Balfour was the late
Prime Minister, he will still believe that the late Prime Minister’s last
name began with a ‘B,’ yet this belief, though true, would not be thought
to constitute knowledge.

As in the Red Barn Example (Section 4), we have to handle a wrong reason for a
true justified fact. Again, the tools at Justification Logic seem to be useful and adequate
here.

Let B stand for

the late Prime Minister’s last name began with a ‘B.’

Furthermore, let w be a wrong reason for B and r the right (hence factive) reason for B.
Then, Russell’s example yields the following assumptions:

{w:B, r:B, r:B → B}. (18)

In the original setting (18), we do not claim that w is a factive justification for B; moreover,
such factivity is not completely consistent with our intuition. Paradoxically, however, in the
basic Justification Logic J, we can logically deduce factivity of w from (18):

1. r:B, an assumption;
2. r:B → B, an assumption;
3. B, from 1 and 2, by Modus Ponens;
4. B →(w:B → B), a propositional axiom;
5. w:B → B, from 3 and 4, by Modus Ponens.

However, this derivation utilizes the fact that r is a factive justification for B to conclude
w:B → B, which constitutes the case of ‘induced factivity’ of w:B. The question is, how
can we distinguish the ‘real’ factivity of r :B from an ‘induced factivity’ of w:B? Again,
some sort of truth-tracking is needed here, and Justification Logic seems to do the job. The
natural approach would be to consider the set of assumptions (18) without r:B, that is,

{w:B, r:B → B}, (19)

and establish that factivity of w, that is, w : B → B is not derivable from (19). Here is a
J-modelM = (W, R, E, �) in which (19) holds but w:B → B does not.

W = {0}, R = ∅, 0 �� B, and E(t, F) holds for all pairs (t, F) except (r, B). It is easy
to see that the closure conditions Application and Sum on E are fulfilled. At 0, w:B holds,
that is,

0�w:B,

since w is an admissible evidence for B at 0 and there are no possible worlds accessible
from 0. Furthermore,

0 ��r:B,

since, according to E , r is not an admissible evidence for B at 0. Hence

0�r:B → B.

On the other hand,

0 ��w:B → B

since B does not hold at 0.

4 Which was common knowledge back in 1912.
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§7. Additional principles and systems. In this section, we discuss other principles
and operations which may or may not be added to the core Justification Logic systems.

7.1. Positive introspection. One of the common principles of knowledge is identifying
knowing and knowing that one knows. In the formal modal setting, this corresponds to

KF →KKF.

This principle has an adequate explicit counterpart: the fact that the agent accepts t as a
sufficient evidence of F serves as a sufficient evidence that t:F. Often, such meta-evidence
has a physical form, for example, a referee report certifying that a proof of a paper is
correct, a computer verification output given a formal proof t of F as an input, a formal
proof that t is a proof of F, and so forth. Positive Introspection assumes that given t , the
agent produces a justification !t of t:F such that

t:F →!t:(t:F).

Positive Introspection in this operational form first appeared in the Logic of Proofs LP
(Artemov, 1995, 2001). A similar suggestion was made by Gödel (1995).

We define

J4= J + A5

and

LP = JT + A5,5

with

A5. Positive Introspection Axiom t:F →!t:(t:F).

We also define J40, J4CS , LP0, and LPCS in the natural way (cf. Section 3.4). The direct
analogue of Theorem 3.3 holds for J4CS and LPCS as well.

Note that in the presence of the Positive Introspection Axiom, one could limit the scope
of the Axiom Internalization Rule R4 to internalizing axioms which are not yet of the form
e:A. This is how it has been done in LP: the Axiom Internalization can then be emulated
by using !!e :(!e :(e : A)) instead of e3 :(e2 :(e1 : A)), and so forth. The notion of Constant
Specification could also be simplified accordingly.

Such modifications are minor and they do not affect the main theorems and applications
of Justification Logic.

7.2. Negative introspection. Pacuit and Rubtsova considered (Pacuit, 2005, 2006;
Rubtsova, 2005, 2006) the Negative Introspection operation ‘?’ which verifies that a given
justification assertion is false. A possible motivation for considering such an operation
could be that the positive introspection operation ‘!’ may well be regarded as capable of
providing conclusive verification judgments about the validity of justification assertions
t : F . So, when t is not a justification for F , such a ‘!’ should conclude that ¬t :F . This
is normally the case for computer proof verifiers, proof checkers in formal theories, and
so forth. This motivation is, however, nuanced: the examples of proof verifiers and proof
checkers work with both t and F as inputs, whereas the Pacuit–Rubtsova format ?t suggests
that the only input for ‘?’ is a justification t , and the result ?t is supposed to justify
propositions ¬t:F uniformly for all F’s for which t:F does not hold. Such an operation ‘?’

5 In our notation, LP can be assigned the name JT4. However, in virtue of a fundamental role
played by LP for Justification Logic, we suggest keeping the name LP for this system.
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does not exist for formal mathematical proofs since ?t should be a single proof of infinitely
many propositions ¬t :F , which is impossible.6 For what it’s worth, we include Negative
Introspection in the list of additional justification principles, and leave the decision of
whether to accept it or not to the user.

A6. Negative Introspection Axiom ¬t:F →?t:(¬t:F).

We define systems

J45 = J4 + A6,

JD45 = J45 + ¬t:⊥,

JT45 = J45 + A4,

and naturally extend these definitions to J45CS , JD45CS , and JT45CS .
The direct analogue of Theorem 3.3 holds for J45CS , JD45CS , and JT45CS .

7.3. More epistemic models. We now define epistemic models for other Justification
Logic systems.

• J4-models are J-models with transitive R and two additional conditions:
Monotonicity with respect to R, that is, u ∈ E(t, F) and u Rv yield v ∈ E(t, F),
Introspection closure: E(t, F) ⊆ E(!t, t:F);

• LP-models are J4-models with reflexive R (these are the original Kripke–Fitting
models);

• J45-models are J4-models satisfying conditions: Negative Introspection closure:
[E(t, F)]c ⊆ E(?t, ¬t:F) (Here [X ]c denotes the complement of X .)
Strong Evidence: u � t : F for all u ∈ E(t, F) (i.e., only ‘actual’ evidence is
admissible).
Note that J45-models satisfy the Stability property: u Rv yields ‘u ∈ E(t, F) iff
v ∈ E(t, F).’ In other words, E is monotone with respect to R−1 as well. Indeed,
the direction ‘u ∈ E(t, F) yields v ∈ E(t, F)’ is due to Monotonicity. Suppose
u �∈ E(t, F). By Negative Introspection closure, u ∈ E(?t, ¬t : F). By Strong
Evidence, u�?t:(¬t:F). By the definition of forcing, v �¬t:F , that is, v �� t:F . By
Strong Evidence, v �∈ E(t, F).
Note also that the Euclidean property of the accessibility relation R is not required
for J45-models and is not needed to establish the soundness of J45 with respect
to J45-models. However, the canonical model for J45 is Euclidean, hence both
soundness and completeness claims trivially survive an additional requirement that
R is Euclidean.

• JD45-models are J45-models with the Serial condition on the accessibility relation
R: for each u there is v such that u Rv holds.

• JT45-models are J45-models with reflexive R. Again, the Euclidean property (or,
equivalently, symmetry) of R is not needed for soundness. However, these prop-
erties hold for the canonical JT45-model, hence they could be included into the
formulation of the Completeness Theorem.

6 A proof-compliant way to represent negative introspection in Justification Logic was suggested
in Artemov et al. (1999), but we will not consider it here.
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THEOREM 7.1. Each of the logics J4CS, LPCS, J45CS, JT45CS for any Constant Speci-
fication is sound and complete with respect to the corresponding class of epistemic models.
JD45CS is complete w.r.t. its epistemic models for axiomatically appropriate CS.

Proof. We will follow the footprints of the proof of Theorem 5.1.

1. J4. For soundness, it now suffices to check the validity of the Positive Introspection
Axiom at each node of any J4-model. Suppose u� t:F . Then u ∈ E(t, F) and v�F
for each v such that u Rv . By the closure condition, u ∈ E(!t, t:F), and it remains
to check that v � t :F . By monotonicity of E , v ∈ E(t, F). Now, take any w such
that v Rw. By transitivity of R, u Rw as well, hence w�F . Thus v� t:F , u�!t:t:F ,
and u� t:F →!t:t:F .
Completeness is again established as in Theorem 5.1. It only remains to check
that the accessibility relation R is transitive, the admissible evidence function E is
monotone, and the additional closure condition on E holds.
Monotonicity. Suppose �R� and � ∈ E(t, F), that is, t:F ∈ �. By maximality of
�, !t :t :F ∈ � as well, since J4 � t :F → !t :t :F . By definition, t :F ∈ �, that is,
� ∈ E(t, F).
Transitivity. Suppose �R�, �R�, and t:F ∈ �. Then, by monotonicity, t:F ∈ �.
By the definition of R, F ∈ �, hence �R�.
Closure. Suppose � ∈ E(t, F), that is, t:F ∈ �. Then as above, !t:t:F ∈ �, hence
� ∈ E(!t, t:F).

2. LP. This is the well-studied case of the Logic of Proofs (cf. Fitting, 2005).

3. J45. Soundness. We have to check the Negative Introspection Axiom. Let u�¬t:F ,
that is, u �� t : F . By the Strong Evidence condition, u �∈ E(t, F). By Negative
Introspection closure, u ∈ E(?t, ¬t:F). By Strong Evidence, u�?t:(¬t:F).
Completeness. We follow the same canonical model construction as in J and J4.
The only addition is checking Negative Introspection closure. Let � �∈ E(t, F).
Then t :F �∈ �. By maximality, ¬t :F ∈ �. By the Negative Introspection Axiom,
?t:(¬t:F) ∈ �, hence � ∈ E(?t, ¬t:F).
Here is an additional feature of the canonical model that can be included in the
formulation of the Completeness Theorem to make it more specific.
R is Euclidean. Let �R� and �R�′. It suffices to show that �� ⊆ �′. Let F ∈ �� .
Then for some t , t :F ∈ �, that is, � ∈ E(t, F). By Stability, � ∈ E(t, F), hence
t:F ∈ � and F ∈ �� . By the definition of R, F ∈ �′.

4. JD45. The proof can be found in Kuznets (2008).

5. JT45. For soundness, it suffices to check the Factivity Axiom, which easily follows
from the reflexivity of R. For completeness, follow the footprints of 3 and note that
R is reflexive. Indeed, �� ⊆ � for reflexive theories.
The additional features of the canonical model are as follows: R is an equivalence
relation, the admissible evidence function does not distinguish equivalent worlds.
This follows easily from 5.

�
Historical survey. The first Justification Logic system LP was introduced in 1995 in

Artemov (1995) (cf. also Artemov, 2001). Such basic properties of Justification Logic
as internalization, realization, arithmetical semantics (Artemov, 1995, 2001), symbolic
models and complexity estimates (Brezhnev & Kuznets, 2006; Kuznets, 2000; Milnikel,
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2007; Mkrtychev, 1997), and epistemic semantics and completeness (Fitting, 2003, 2005)
were first established for LP.

A fair amount of work has already been done on Jusification Logics other than LP.
Systems J, J4, and JT were first considered in Brezhnev (2000) under different names
and in a slightly different setting.7 JT45 appeared independently in Pacuit (2005, 2006)
and Rubtsova (2005, 2006), and JD45 in Pacuit (2005, 2006). J45 has, perhaps, first been
considered in this work. Systems combining epistemic modalities and justifications were
studied in Artemov (2006) and Artemov & Nogina (2004, 2005).

Mkrtychev semantics for J, JT, and J4 with Completeness Theorem were found in
Kuznets (2000). Complexity bounds for LP and J4 were found in Kuznets (2000) and
Milnikel (2007). A comprehensive overview of all decidability and complexity results can
be found in Kuznets (2008).

§8. Forgetful projection and the correspondence theorem. An intuitive connection
between justification assertions and the justified belief modality 2 involves the informal
existential quantifier: 2F is read as

for some x, x:F .

The language of Justification Logic does not have quantifiers over justifications, but instead
has a sufficiently rich system of operations (polynomials) on justifications. We can use
Skolem’s idea of replacing quantifiers by functions and view Justification Logic systems
as Skolemized logics of knowledge/belief. Naturally, to convert a Justification Logic sen-
tence to the corresponding Epistemic Modal Logic sentence, one can use the forgetful
projection ‘;’ that replaces each occurrence of t:F by 2F .

Example: the sentence

x:P → f (x):Q

can be regarded as a Skolem-style version of

∃x(x:P)→∃y(y:Q),

which can be read as

2P →2Q,

which is the forgetful projection of the original sentence x :P → f (x):Q (here, P , Q are
assumed to be atomic sentences for simplicity’s sake).

Examples (P , Q are atomic propositions):

t:P → P ; 2P → P,

t:P →!t:(t:P) ; 2P →22P,

s:(P → Q)→(t:P →(s ·t):Q) ; 2(P → Q)→(2P →2Q).

Forgetful projection sometimes forgets too much, for example, a logical triviality x :P →
x :P , a meaningful principle x :P → (x + y):P , and a nonvalid formula x :P → y:P have
the same forgetful projection 2P → 2P . However, ‘;’ always maps valid formulas of
Justification Logic to valid formulas of Epistemic Logic. The converse also holds: any valid
formula of Epistemic Logic is a forgetful projection of some valid formula of Justification

7 Brezhnev (2000) also considered variants of Justification Logic systems which, in our notations,
would be called “JD” and “JD4.”
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Logic. This follows from Correspondence Theorem 8.1. We assume that ‘;’ is naturally
extended from sentences to logics.

THEOREM 8.1 (Consolidated Correspondence Theorem).

1. J ; K
2. JT ; T
3. J4 ; K4
4. LP ; S4
5. J45 ; K45
6. JD45 ; KD45
7. JT45 ; S5

Proof. It is straightforward that the forgetful projection of each of the Justification Logic
systems J, JT, J4, LP, J45, JD45, JT45 is derivable in the corresponding epistemic modal
logics K, T, K4, S4, K45, KD45, S5, respectively.

The core of Theorem 8.1 is the Realization Theorem:

One can recover justification terms for all modal operators in valid
principles of epistemic modal logics K, T, K4, S4, K45, KD45, and
S5 such that the resulting formula is derivable in the corresponding
Justification Logic system J, JT, J4, LP, J45, JD45, and JT45.

The important feature of the Realization Theorem is that it recovers realizing functions
according to the existential reading of the modality, that is, negative occurrences of
the modality are realized by (distinct) free variables, and the positive occurrences by
justification polynomials, depending on these variables. For example, 2F → 2G will
be realized by x:F ′ → f (x):G ′ where F ′, G ′ are realizations of F and G, respectively.

The Realization Theorem was first established for S4/LP (case 4) in Artemov (1995,
2001), cases 1–3 are covered in Brezhnev (2000). The Realization Theorem for 7 is estab-
lished in Rubtsova (2006) using a very potent method from Fitting (2005), and the proof
for 5 and 6 is very similar to Fitting (2005) and Rubtsova (2006) and can be safely omitted
here. �

The Correspondence Theorem shows that the major epistemic modal logics K, K4,
K45, KD45 (for belief) and T, S4, S5 (for knowledge) have exact Justification Logic
counterparts J, J4, J45, JD45 (for partial justifications) and JT, LP, JT45 (for factive
justifications).

8.1. Foundational consequences of the correspondence theorem. Is there anything
new that we have learned from the Correspondence Theorem about epistemic modal log-
ics?

First of all, this theorem provides a new semantics for major modal logics. In addition
to the traditional Kripke-style ‘universal’ reading of 2F as

F holds in all possible situations,

there is now a rigorous ‘existential’ semantics for 2F that reads as

there is a witness (proof, justification) for F.

Perhaps the justification semantics plays a similar role in modal logic to that played
by Kleene realizability in intuitionistic logic. In both cases, the intended semantics was
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existential: the Brouwer–Heyting–Kolmogorov interpretation of intuitionistic logic (Heyt-
ing, 1934; Troelstra & van Dalen, 1988; van Dalen, 1986) and Gödel’s provability reading
of S4 (Gödel, 1933, 1995). In both cases, a later possible-world semantics of universal
character became a highly potent and dominant technical tool. However, in both cases,
Kripke semantics did not solve the original semantical problems. It took Kleene realizabil-
ity (Kleene, 1945; Troelstra, 1998) to reveal the computational semantics of intuitionistic
logic and the Logic of Proofs (Artemov, 1995, 2001) to provide exact BHK semantics of
proofs for intuitionistic and modal logic.

In the epistemic context, Justification Logic and the Correspondence Theorem add a
new ‘justification’ component to modal logics of knowledge and belief. Again, this new
component was in fact an old notion which has been widely discussed by mainstream
epistemologists but has remained out of the scope of formal logical methods. The Corre-
spondence Theorem tells us that justifications are compatible with Hintikka-style systems
and hence can be regarded as a foundation for epistemic modal logic.

Another comparison suggests itself here: Skolem functions for first-order logic which
provide a functional reading of quantifiers. It might seem that Skolem functions do not
add much, since they do not suggest altering first-order logic. However, Skolem functions
proved to be very useful for foundations (e.g., Henkin and Herbrand models, etc.), as well
as for applications (Resolution, Logic Programming, etc.).

Note that the Realization Theorem is not at all trivial. For cases 1–4, realization algo-
rithms are known that use cut-free derivations in the corresponding modal logics (Artemov,
1995, 2001; Brezhnev, 2000; Brezhnev & Kuznets, 2006). For 5–7, the Realization The-
orem has been established by Fitting’s method or its proper modifications (Fitting, 2005;
Rubtsova, 2006). In principle, these results also produce realization procedures which are
based on exhaustive search.

It would be a mistake to draw the conclusion that any modal logic has a reasonable
Justification Logic counterpart. For example, the logic of formal provability GL (Artemov
& Beklemishev, 2005; Boolos, 1993) contains the Löb Principle

2(2F → F)→2F, (20)

which does not seem to have an epistemically acceptable explicit version. Let us consider,
for example, a case when F is the propositional constant ⊥ for false. A Skolem-style
reading of (20) suggests that there are justification terms s and t such that

x:(s:⊥→⊥)→ t:⊥. (21)

This is intuitively false for factive justification, though. Indeed, s :⊥ → ⊥ is the Factivity
Axiom. Apply Axiom Internalization R4 to obtain c:[s:⊥→⊥] for some constant c. This
choice of c makes the antecedent of (21) intuitively true and the conclusion of (21) false.8

In particular, (20) is not valid for proof interpretation (cf. Goris, 2007, for a total account
of which principles of GL are realizable).

§9. Quantifier-free first-order justification logic. In this section, we extend J from
the propositional language to the quantifier-free first-order language. To simplify formal-
ities, we will regard here the first-order language without functional symbols, but with
equality. Later, in Section 10, we will introduce definite descriptions in the form ιx F(x).

8 To be precise, we have to substitute c for x everywhere in s and t .
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The language under consideration in this section is the first-order language with indi-
vidual variables and constants, predicate symbols of any arity and the equality symbol ‘=,’
along with justification terms (including operations ‘·’ and ‘+’) and the formula formation
symbol ‘:’ as in Section 3.3. Formulas are defined in the usual first-order way (without
quantifiers) with an additional clause that if F is a formula and t is a justification polyno-
mial, then t:F is again a formula. The ‘quantifier-free J’ has all the axioms and rules of J,
plus the equality axioms.

The formal system qfJ0 has the following postulates:

A1. Classical axioms of quantifier-free first-order logic with equality and Modus
Ponens,

A2. Application Axiom s:(F →G)→(t:F →(s · t):G),

A3. Monotonicity Axiom s:F →(s + t):F, s:F →(t + s):F,

E1. g = g for any individual term g (reflexivity of equality);

E2. f = g → (P[ f/x] → P[g/x]) (substitutivity of equality), where f and g are
individual terms, P is any atomic formula, P[ f/x] and P[g/x] are the results of
replacing all the occurrences of a variable x in P by f and g respectively; we will
use notations P( f ), P(g) for that.

The system qfJ is qfJ0 + R4, where

R4. For each axiom A and any constants e1, e2, . . . , en, infer en :en−1 : . . . :e1 : A.

As in Section 3.4, we define Constant Specifications and systems qfJCS . In particular, qfJ∅
is qfJ0 and qfJTCS is qfJ.

The following proposition follows easily from the definitions.

PROPOSITION 9.1. Deduction Theorem holds for qfJCS for any constant specification
CS. Internalization holds for qfJCS for an axiomatically appropriate constant specification
CS.

The following theorem provides a way to resolve the Frege puzzle (Frege, 1952) in an
epistemic environment: equality of individual objects alone does not warrant substitutivity,
but justified equality does.

THEOREM 9.2 (Justified substitution). For any individual terms f and g, justification
variable u, and atomic formula P(x), there is a justification term s(u) such that qfJ proves

u:( f = g)→s(u):[P( f )↔ P(g)].

The same holds for any qfJCS with an axiomatically appropriate constant specification CS.

Proof. Taking into account Example 3.1, it suffices to establish that for some t (u),

u:( f = g)→ t (u):[P( f )→ P(g)].

From E2 it follows that qfJ proves

( f = g)→ [P( f )→ P(g)].

By R4, there is a justification constant c such that qfJ proves

c:{( f = g)→ [P( f )→ P(g)]}.
By A2, qfJ proves

c:{( f = g)→ [P( f )→ P(g)]}→{u:( f = g)→(c·u):[P( f )→ P(g)]}.
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By Modus Ponens, qfJ proves

u:( f = g)→(c·u):[P( f )→ P(g)].

It suffices now to pick c·u as t (u). �
An unjustified substitution can fail in qfJ. Namely, for any individual variables x and y,

a predicate symbol P , and justification term s, the formula

(x = y)→s:[P(x)↔ P(y)] (22)

is not valid. To establish this, one needs some model theory for qfJ.
We define qfJ-models as the usual first-order Kripke models9 equipped with admissible

evidence functions. A model is (W, {Dw}, R, E,�) such that the following properties hold.

• W is an nonempty set of worlds.
• {Dw} is the collection of nonempty domains Dw for each w ∈ W.
• R is the binary (accessibility) relation on W.
• E is the admissible evidence function which for each justification term t and for-

mula F , returns the set of worlds E(t, F) ⊆ W . Informally, these are the worlds
where t is admissible evidence for F . We also assume that E satisfies the usual
closure properties Application and Sum (Section §5.).

• � is the forcing (truth) relation such that

� assigns elements of Dw to individual variables and constants for each w ∈ W ,

for each n-ary predicate symbol P , and any a1, a2, . . . , an ∈ Dw, it is specified
whether P(a1, a2, . . . , an) holds in Dw,

� is extended to all the formulas by stipulating that

w�s = t iff ‘�’ maps s and t to the same element of Dw,

w� P(t1, t2, . . . , tn) iff ‘�’ maps ti ’s to ai ’s and P(a1, a2, . . . , an) holds in Dw,

w�F ∧ G iff w�F and w�G,

w�¬F iff w ��F ,

w� t:F iff v�F for all v such that wRv , and w ∈ E(t, F).

The notion of a model respecting given constant specification is directly transfered from
Section 5.

The following Theorem is established in the same manner as the soundness part of
Theorem 5.1.

THEOREM 9.3. For any Constant Specification CS, qfJCS is sound with respect to the
corresponding class of epistemic models.

We are now ready to show that instances of unjustified substitution can fail in qfJ.
To do this, it now suffices to build a qfJ-counter-model for (22) with the total constant
specification. Obviously, the maximal E (i.e., E(t, F) contains each world for any t and F)
respects any constant specification.

The Kripke–Fitting counter-model in Figure 1 exploits the traditional modal approach
to refute a belief assertion by presenting a possible world where the object of this belief
does not hold. In the picture, only true atomic formulas are shown next to possible worlds.

9 Equality is interpreted as identity in the model.
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Fig. 1. Kripke–Fitting counter-model for unjustified substitution.

• W = {0, 1}; R = {(0, 1)}; D0 = D1 = {a, b};
• 1� P(a) and 1 �� P(b); the truth value of P at 0 does not matter;
• x and y are interpreted as a at 0; x is interpreted as a and y as b at 1;
• E is maximal at 0 and 1.

Obviously, 0� x = y. Since 1 �� P(x)↔ P(y), for any justification term s, 0 ��s:[P(x)↔
P(y)]. Hence

0 �� x = y → s:[P(x)↔ P(y)].

§10. Formalization of Gettier examples. We consider Gettier’s Case I in detail; Case
II is much simpler logically and can be given similar treatment. We will present a complete
formalization of Case I in qfJ with a definite description operation. Let

• J (x) be the predicate x gets the job;
• C(x) be the predicate x has (ten) coins (in his pocket);
• Jones and Smith be individual constants denoting Jones and Smith, respec-

tively10;
• u be a justification variable.

10.1. Natural model for Case I. Gettier’s assumptions (d) and (e) contain a definite
description

the man who will get the job. (23)

In this section, we will formalize Case I using a definite description ι-operation such that
ιx P(x) is intended to denote

the x such that P(x).

We interpret ιx P(x) in a given world of a qfJ-model as the element a such that P(a) if
there exists a unique a satisfying P(a). Otherwise, ιx P(x) is undefined and any atomic
formula where ιx P(x) actually occurs is taken to be false. Definite description terms are
non-rigid designators: ιx P(x) may be given different interpretations in different worlds of
the same qfJ-model (cf. Fitting, 2007). The use of a definite description

Jones is the man who will get the job

as a justified belief by Smith hints that Smith has strong evidence for the fact that at most
one person will get the job. This is implicit in Gettier’s assumption.

10 Assuming that there are people seeking the job other than Jones and Smith does not change the
analysis.
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Fig. 2. Natural Kripke–Fitting model for Gettier Case I.

We now present a Fitting model M which may be regarded as an exact epistemic
formulation of Case I.

1. At the actual world 0, J (Smith), C(Smith), and C(Jones)11 hold and J (Jones)
does not hold.

2. There is a possible belief world 1 for Smith at which J (Jones) and ¬J (Smith)
hold. These conditions follow from proposition (d)

Jones is the man who will get the job, and Jones has coins

or, in logic form,

(Jones= ιx J (x)) ∧ C(Jones)

for which Smith has a strong evidence. In addition, Smith has no knowledge of
‘Smith has coins’ and there should be a possible world at which C(Smith) is
false; we use 1 to represent this possibility.

3. World 1 is accessible from 0.

4. Smith has a strong evidence of (d), which we will represent by introducing a justi-
fication variable u such that

u:[(Jones= ιx J (x)) ∧ C(Jones)] (24)

holds at the actual world 0. We further assume that the admissible evidence function
E respects the justification assertion (24), which yields

0 ∈ E(u, (Jones= ιx J (x)) ∧ C(Jones)).

To keep things simple, we can assume that E is the maximal admissible evidence
function, that is, E(t, F) = {0, 1} for each t, F .

These observations lead to the following modelM on Figure 2.

• W = {0, 1}; R = {(0, 1)};
• D0,1 = {Jones, Smith}, Jones is interpreted as ‘Jones’ and Smith as ‘Smith’;
• 0� J (Smith), C(Jones), C(Smith), ¬J (Jones);
• 1� J (Jones), C(Jones), ¬J (Smith), ¬C(Smith);
• ιx J (x) at 0 is interpreted as Smith and at 1 as Jones;
• E is maximal at both 0 and 1.

11 Strictly speaking, Case I explicitly states only that Smith has a strong evidence that C(Jones),
which is not sufficient to conclude that C(Jones), since Smith’s justifications are not necessarily
factive. However, since the actual truth value of C(Jones) does not matter in Case I, we assume
that in this instance, Smith’s belief that C(Jones) was true.
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It is interesting to compare this model with the axiomatic description of Case I. Here is
the list of explicit assumptions:

J (Smith), C(Smith), C(Jones), ¬J (Jones),

u:[(Jones= ιx J (x)) ∧ C(Jones)]. (25)

It follows from the Soundness Theorem 9.3 that assumptions (25) provide a sound descrip-
tion of the actual world:

PROPOSITION 10.1. qfJ + (25) � F entails 0�F.

EXAMPLE 10.2. The description of a model by (25) is not complete. For example,
conditions (25) do not specifically indicate whether t:C(Smith) holds at the actual world
for some t, whereas it is clear from the model that 0 �� t : C(Smith) for any t since
1 ��C(Smith) and 1 is accessible from 0. ModelM extends the set of assumptions (25)
to a possible complete specification: every ground proposition F in the language of this
example is either true or false at the ‘actual’ world 0 of the model.

10.2. Formalizing Gettier’s reasoning. Gettier’s conclusion in Case I states that Smith
is justified in believing that ‘The man who will get the job has ten coins in his pocket.’ In
our formal language, this amounts to a statement that for some justification term t ,

t:C(ιx J (x)) (26)

is derivable in qfJ from assumptions of Case I.

THEOREM 10.3. Gettier’s conclusion t:C(ιx J (x)) is derivable in qfJ from assumptions
(25) of Case I. Furthermore, t:C(ιx J (x)) holds at the ‘actual world’ 0 of the natural model
M of Case I.

Proof. In order to find t we may mimic Gettier’s informal reasoning. First, we formally
derive (e) (i.e., C(ιx J (x))) from (d) (i.e., Jones= ιx J (x) ∧ C(Jones)) and then use the
fact that (d) is justified (i.e., u:[Jones= ιx J (x) ∧ C(Jones)]). We will now show that
this argument can be formalized in qfJ. Note that in qfJ, we may reason as follows:

1. Jones = ιx J (x)→ [C(Jones)→C(ιx J (x))], an axiom of qfJ;

2. [Jones = ιx J (x) ∧ C(Jones)] → C(ιx J (x)), by propositional reasoning, from
1;

3. s:{[Jones = ιx J (x) ∧ C(Jones)]→C(ιx J (x))}, by Internalization, from 2;

4. u:[Jones = ιx J (x) ∧ C(Jones)] → (s ·u):C(ιx J (x)), by Axiom A2 and Modus
Ponens, from 3;

5. u:[Jones= ιx J (x) ∧ C(Jones)], an assumption from (25);

6. (s ·u):C(ιx J (x)), by Modus Ponens, from 4 and 5.

Now we can pick t to be s ·u. So,

qfJ + (25) � (s ·u):C(ιx J (x))

and, by Proposition 10.1,

0�(s ·u):C(ιx J (x)).

�
10.3. Eliminating definite descriptions, Russell-style. We can eliminate definite de-

scriptions from Case I using, for example, Russell’s translation (cf. Fitting & Mendelsohn,
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1998; Neale, 1990; Russell, 1905, 1919) of definite descriptions. According to Russell,
C(ιx J (x)) contains a hidden uniqueness assumption and reads as

∃x[J (x) ∧ ∀y(J (y)→ y = x) ∧ C(x)], (27)

and Jones = ιx J (x) as

J (Jones) ∧ ∀y(J (y)→ y = Jones). (28)

In addition, in the universe of Case I consisting of two objects Jones, Smith, a universally
quantified sentence ∀yF(y) reads as

F(Jones) ∧ F(Smith),

and an existentially quantified statement ∃xG(x) reads as

G(Jones) ∨ G(Smith).

Taking into account all of these simplifying observations, we may assume that for Smith

(and the reader), ∀y(J (y)→ y = Jones) reads as

[J (Jones)→(Jones = Jones)] ∧ [J (Smith)→(Smith = Jones)],

which is equivalent12 to

¬J (Smith).

Now, (28) is equivalent to

J (Jones) ∧ ¬J (Smith),

and the whole Gettier proposition (d) collapses to

J (Jones) ∧ ¬J (Smith) ∧ C(Jones). (29)

The assumption that (d) is justified for Smith can now be represented by

v:[J (Jones) ∧ ¬J (Smith) ∧ C(Jones)], (30)

for some justification variable v .
Smith’s justified belief

‘the man who will get the job has coins,’ (31)

according to Russell, should read as

∃x[J (x) ∧ ∀y(J (y)→ y = x) ∧ C(x)]. (32)

The same considerations as above show that

∀y[J (y)→(y = Jones)]

is equivalent to

¬J (Smith),

and

∀y[J (y)→(y = Smith)]

12 We assume that everybody is aware that Smith �= Jones.
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is equivalent to

¬J (Jones).

Since an existentially quantified formula ∃xG(x) is logically equivalent to a disjunction
G(Jones) ∨ G(Smith), formula (32) is equivalent to

[J (Jones)∧¬J (Smith)∧C(Jones)]∨[J (Smith)∧¬J (Jones)∧C(Smith)]. (33)

Finally, the formalization of (31) in our language amounts to stating that for some justifi-
cation term p,

p:{[J (Jones)∧¬J (Smith)∧C(Jones)]∨ [J (Smith)∧¬J (Jones)∧C(Smith)]}.
(34)

THEOREM 10.4. Gettier’s claim (34) is derivable in qfJ from the assumption (30) of
Case I, and holds in the ‘actual world’ 0 of the natural modelM of Case I.

Proof. After all the preliminary work and assumptions, there is not much left to do. We
just note that (29) is a disjunct of (33). A derivation of (34) from (30) in qfJ reduces now
to repeating steps of Example 3.2, which shows how to derive a justified disjunction from
its justified disjunct. �

COMMENT 10.5. One can see clearly the essence of Gettier’s example. In (33), one of
two disjuncts is justified but false, whereas the other disjunct is unjustified but true. The
resulting disjunction (33) is both justified and true, but not really known to Smith.

10.4. Hidden uniqueness assumption is necessary. In this subsection, we study what
happens if we deviate from Russell’s reading of definite descriptions, in particular if we
skip the uniqueness of the defined object. For example, let us read Gettier’s proposition
(d) as

Jones will get the job, and Jones has ten coins in his pocket, (35)

and proposition (e) as

A man who will get the job has ten coins in his pocket. (36)

Then a fair formalization of (35) would be

J (Jones) ∧ C(Jones), (37)

and the assumption that (35) is justified for Smith is formalized as

u:[J (Jones) ∧ C(Jones)]. (38)

In this case, the set of explicitly made non-logical assumptions is

1. u:[J (Jones)∧C(Jones)], assumption (38);
2. ¬J (Jones) (Jones does not get the job);
3. J (Smith) (Smith gets the job);
4. C(Smith) (Smith has coins).

Condition (36) naturally formalizes as

[J (Jones)→C(Jones)] ∧ [J (Smith)→C(Smith)]. (39)

The claim that (39) is justified for Smith is formalized as

t:{[J (Jones)→C(Jones)] ∧ [J (Smith)→C(Smith)]} (40)

for some justification term t .
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Fig. 3. Counter-model for Case I without uniqueness.

Fig. 4. Natural Kripke–Fitting model for the streamlined Case I.

We show that the assumptions 1–4 above do not suffice for proving (40).

PROPOSITION 10.6. For any justification term t, formula (40) is not derivable in qfJ
from assumptions 1–4.

Proof. Suppose (40) is derivable in qfJ from assumptions 1–4. Then, by the Deduction
Theorem, qfJ would derive

‘Conjunction of 1–4 ’→ (40). (41)

It now suffices to build a Fitting qfJ-model (Figure 3) where (41) does not hold at a certain
world.
At 0, all assumptions 1–4 hold, but (40) is false at 0 for all t’s. Indeed, (39) is false at 1,
since its conjunct

J (Smith)→C(Smith)

is false at 1, and 1 is accessible from 0. �

10.5. Streamlined case I: no coins/pockets are needed. In this subsection, we show
that references to coins and pockets, as well as definite descriptions, are redundant for
making the point in Gettier example Case I. Here is a simpler, streamlined case based on
the same material.

Smith has strong evidence for the proposition:
(d) Jones will get the job.

Proposition (d) entails:
(e) Either Jones or Smith will get the job.

Let us suppose that Smith sees the entailment from (d) to (e), and accepts (e) on the grounds
of (d), for which he has strong evidence. In this case, Smith is clearly justified in believing
that (e) is true. But imagine further that unknown to Smith, he himself, not Jones, will get
the job. Then

1) (e) is true,

2) Smith believes that (e) is true, and

3) Smith is justified in believing that (e) is true.
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But it is equally clear that Smith does not know that (e) is true. . ..

In this version, the main assumption is

Smith has a strong evidence that Jones gets the job. (42)

Its straightforward formalization is

v:J (Jones). (43)

The claim is that

Smith is justified in believing that either Jones or Smith will get the job. (44)

The natural formalization of the claim is

t:[J (Jones) ∨ J (Smith)]. (45)

The set of formal assumptions is

v:J (Jones), J (Smith), ¬J (Jones).

It is easy now to derive (45) in qfJ from assumption (43).

1. v:J (Jones), assumption (43);

2. J (Jones)→ J (Jones)∨ J (Smith), propositional axiom;

3. c:[J (Jones)→ J (Jones)∨ J (Smith)], from 2, by Axiom Internalization R4;

4. c:[J (Jones)→ J (Jones)∨ J (Smith)]→ [v:J (Jones)→ (c ·v):(J (Jones)∨
J (Smith))], Axiom A2;

5. (c·v):[J (Jones)∨ J (Smith)], from 4, 3, and 1, by Modus Ponens twice.

At the actual world 0, both hold:

J (Jones)∨ J (Smith) (meaning (e) is true)

and

(c·v):[J (Jones)∨ J (Smith)] (meaning (e) is justified).

The desired Gettier-style point is made on the same material but without the unnecessary
use of quantifiers, definite descriptions, coins, and pockets.

It is fair to note, however, that Gettier example Case II in Gettier (1963) does not have
these kinds of redundancies and is logically similar to the streamlined version of Case I
presented above.

§11. Gettier example and factivity.

THEOREM 11.1. Gettier assumptions (25) in Case I are inconsistent in Justification
Logic systems with factive justifications.

Proof. Here is an obvious derivation of a contradiction in qfJT from (25):

u:[(Jones= ιx J (x)) ∧ C(Jones)], by (24);

Jones= ιx J (x), by the Factivity Axiom and some propositional logic;

(Jones= ιx J (x))→ J (Jones), an assumed natural property of definite descrip-
tions;

J (Jones), by Modus Ponens. This contradicts the condition ¬J (Jones)
from (25). �
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The question is, what we have learned about Justification, Belief, Knowledge, and other
epistemic matters?

Within the domain of formal epistemology, we now have a basic logic machinery to
study justifications and their connections with Belief and Knowledge. Formalizing Gettier
is a case study that demonstrates the method.

We show that Gettier reasoning was formally correct, with some hidden assumptions
related to definite descriptions. Gettier examples belong to the area of Justification Logic
dealing with partial justifications and are inconsistent within Justification Logic systems
of factive justifications and knowledge. All this, perhaps, does not come as a surprise to
epistemologists. However, these observations show that models provided by Justification
Logic behave in a reasonable manner.

For epistemology, these developments are furthering the study of justification, for exam-
ple, the search for the ‘fourth condition’ of the JTB definition of knowledge. Justification
Logic provides systematic examples of epistemological principles such as Application,
Monotonicity, Logical Awareness, and their combinations, which look plausible, at least,
within the propositional domain. Further discussion on these and other Justification Logic
principles could be an interesting contribution to this area.

§12. Conclusions. Justification Logic extends the logic of knowledge by the formal
theory of justification. Justification Logic has roots in mainstream epistemology, mathe-
matical logic, computer science, and artificial intelligence. It is capable of formalizing a
significant portion of reasoning about justifications. In particular, we have seen how to
formalize Kripke, Russell, and Gettier examples in Justification Logic. This formalization
has been used for the resolution of paradoxes, verification, hidden assumption analysis,
and eliminating redundancies.

Among other known applications of Justification Logic, so far there are

• intended provability semantics for Gödel’s provability logic S4 with the complete-
ness theorem (Artemov, 1995, 2001);

• formalization of Brouwer–Heyting–Kolmogorov semantics for intuitionistic propo-
sitional logic with the completeness theorem (Artemov, 1995, 2001);

• a general definition of the logical omniscience property, rigorous theorems that
evidence assertions in Justification Logic are not logically omniscient (Artemov
& Kuznets, 2006). This provides a general framework for treating the problem of
logical omniscience;

• an evidence-based approach to common knowledge (so-called justified common
knowledge) which provides a rigorous semantics to McCarthy’s ‘any fool knows’
systems (Antonakos, 2007; Artemov, 2006; McCarthy et al., 1978). justified com-
mon knowledge offers formal systems which are less restrictive than the usual
epistemic logics with common knowledge (Artemov, 2006).

• analysis of Knower and Knowability paradoxes (Dean & Kurokawa, 2007, 2008).

It remains to be seen to what extent Justification Logic can be useful for analysis of
empirical, perceptual, and a priori types of knowledge. From the perspective of Justifi-
cation Logic, such knowledge may be considered as justified by constants (i.e., atomic
justifications). Apparently, further discussion is needed here.
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