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Abstract 

We consider the logical omniscience problem of epistemic logic. We argue that the problem is due to 

the way in which knowledge and belief are captured in Hintikka's possible worlds semantics. We describe an 

alternative approach in which propositions are sets of worlds, and knowledge and belief are simply a list of 

propositions for each agent. The problem of the circularity in the definition is solved by giving a constructive 

definition of belief and knowledge worlds. We show how to incorporate notions such as reasoning and context 

of use in our model. We also demonstrate the power of our approach by showing how we can emulate in it 

other epistemic models. 
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"Do I contradict myself? 
Very well, then, I contradict myself. 
(I am large, I contain multitudes.)" 

Walt Whitman 

1. I n t r o d u c t i o n  

Epistemie logic, the logic of epistemic notions such as knowledge and belief, is a major area of research in 

artificial intelligence (cf. [FH85, Ko80, Le84, MH69, Mo85, XW83]). The major existing formal model of 

knowledge and belief, originated by Hintikka [Hi62], is based on the possible worlds approach. The basic 

notion of this approach is a set W of alternative worlds. Knowledge and belief of an agent, who is situated in 

the actual world w, consist of the agent distinguishing a subset I/d of W as the set of worlds that are possible 

alternatives to w. Thus the agent knows or believes p in w if p is true in all the worlds in 14z 

A fundamental problem with this model is the so called logical omniscience problem [Hi75]. Essentially, 

the problem is that an agent always knows all the logical consequences of her knowledge. That  is, if agent a 

knows p and if p logically implies q, then a also knows q. In particular, a knows all valid sentences. (The 

problem with belief is analogous.) This situation is, of course, unintuitive and unrealistic. 

One can accept this situation by endowing the epistemic notions with new pre-systematic interpreta- 

tions. For example, one can restrict oneself to idealized agent with unbounded reasoning power [Mo85], or one 

can reinterpret knowledge and belief to be implicit rather then explicit, i.e., a believes p if p follows from a's 

explicit beliefs [HM84, Le84, RP85]. But this leaves us in want of a precise treatment of knowledge and belief 

in the customary senses. 

As was pointed out by Cresswell [Cr70, Cr72, Cr73], the problem of logical omniscience can be dealt 

with by allowing non-classical worlds in our semantics, that is, worlds in which not all valid (in the standard 

sense of valid) formulas need be true, or in which inconsistent formulas may be true. (A weaker notion of a 

similar kind is contained in Kripke's notion of non-normal worlds [Kr65].) Such worlds are called impossible in 

[Hi75] and nonstandard in [RB79]. This approach was pursued further by Levesque [Le84], where the non- 

classical worlds are called, following [BP83], "situations". (Levesque claims that his approach is different from 

the possible worlds approach. A closer examination, however, shows that Levesque is actually pursuing the 

nonclassical possible worlds approach advocated by Cresswell.) 

The non-classical worlds approach fails, however, to supply a satisfying solution to the logical omnisci- 

ence problem for two reasons. First, the intuition behind the non-classical worlds, and in particular the incon- 

sistent ones (called in [Le84] "incoherent situations"), is not clear at all. Thus it is far from obvious how to 

define the semantics of logical connectives in such worlds. Secondly, and worse, it turns out that the addition 

of non-classical worlds does not make the agents any less logically omniscient, but  rather it just changes the 

logic in which the agents reason. That is, the agents still believe in all the "logical consequences" of their 

beliefs, where these are not the standard logical consequences but rather the logical consequences in some non- 

standard logical system. For example, the agents in Levesque's model [Le84] turn out to be perfect reasoners 

in Anderson's and Belnap's relevance logic [AB75]. Unfortunately, it does not seem that agents can reason 

perfectly in relevance logic any more than in classical logic. 
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We believe that the roots of the logical omniscience problem lie not only in the structure of the worlds 

(i.e., whether they are classical or non-classical} but also in the very fundamental way in which epistemie 

notions are captured in Hintikka's possible worlds approach [Hi62]. Let us have a closer look at the role 

played by the worlds. 

At the most fundamental level, possible worlds theory is a theory that takes alternative possibilities as 

its basic primitive notion. While this theory is controversial in some circles (see [MAT3, St76, St85] for argu- 

ments pro and con}, we are willing to accept it. The only assumption that this theory makes is that there are 

many conceivable states of affairs. Hintikka in [Hi62] went further to model knowledge and belief as a a rela- 

tion between these conceivable states. According to this approach, at any state an agent has in mind a set of 

states that  are possible relative to that state (the set of possible states is a subset of the set of all conceivable 

states}. It is this set of possible states that captures the agent's knowledge or belief. Unfortunately, this way 

of capturing epistemic notions is far from being intuitive, and goes a long way beyond the basic assumption 

underlying the possible worlds theory. Thus by modelling knowledge and belief the way he did, Hintikka 

made a dubious metaphysical commitment, whose side-effect is the logical omniscience problem. 

In the rest of this paper we study another approach that still has possible worlds as its basic notion, but 

does not make the metaphysical commitment made by Hintikka. The outline of the paper is as follows. In §2 

we describe Montague's approach to modelling epistemic notions (since we wish to make as few metaphysical 

assumptions as possible we consider belief rather than knowledge), and we describe the shortcomings of that 

approach. In §3 we describe our approach, and we investigate its properties. In §4 we show how to model 

different modes of reasoning in our approach. §5 compares our approach with other approaches for modelling 

belief that have been suggested in the literature. We conclude with some comments in §6. 

2. Belief in Propos i t ions  

The most simplistic way to model belief is by belief sets. Let L be the assertion language. Then a belief 

set for an agent a is a set of sentences of L. Intuitively, a believes that 4, where ~b is a sentence of L, if and 

only if ¢ is in the belief set of a. This model makes no assumptions on the nature of belief. In fact not only 

can a have contradictory beliefs, but  also a can even believe in inconsistent sentences such as p/\~p. 
Representing an agent's beliefs by a set of sentences in the basic idea underlying the models in [Eb74], [Ko83], 

[Ko85], and [MH79]. This approach, in which "a believes that" is viewed as a predicate on sentences rather 

than a sentential connective, is called in [Le84] the syntactic approach. Let us look now at the semantic 

analogue of this approach. 

Let W be the set of all possible worlds, and suppose that the notion of satisfaction of a sentence ¢ in a 

world w, denoted w ~ ¢ ,  is defined. For the moment let us not worry about how worlds and satisfaction are 

defined. The intension of a sentence ¢ is the set of worlds in which it is satisfied, i.e., / (¢ )={w : w~¢}.  In 

this framework, the semantics of ¢ is fully determined by its intension. Thus if two sentences ~ and ¢ have 

the same intension, i.e., /~4)-~-/~¢), then they are semantically equivalent; in fact, they are semantically 
synonymous. Thus in a semantical model of belief, i.e., a model where agents believe in semantical objects 

and not in syntactical objects, agents cannot discern between synonymous sentences. So if a believes that 4, 

then she also believes that  ¢. 
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Does such a model solve the logical omniscience problem? It does and it does not. It does because it is 

no longer the case that  if a believes that ~ and if ¢ semantically implies ¢, then a believes that ¢. In particu. 

lax, an agent does not have to believe in all valid sentences, and it can believe in contradictory sentences. 

Nevertheless, if a believes that ¢ and if ¢ is semantically equivalent to ¢, then a believes that ¢. The latter 

phenomenon is, however, unavoidable as long as one wishes to keep the basic framework of the possible worlds 

approach and view " a  believes that" as a sentential connective that  applies to intensions. We refer the reader 

to [Cr85,ThS0] where different approaches to propositional attitudes are taken, and we continue with the 

study of the possible worlds approach. 

In trying to formalize the model, we encounter the difficulty that our informal definitions are in some 

sense circular. In order to define worlds, we have to define belief, in order to define belief, we have to define 

semantical equivalence, and in order to define semanticM equivalence, we have to define worlds. To get 

around that difficulty we make the following observation. The relation of semantical equivalence partitions 

the set of all sentences of L into equivalence classes. Rather than saying that a believes that  ¢, we can say 

that a believes that  [¢], where [¢] is the equivalence class of ¢~. Since all sentences in an equivalence class 

have the same intension, there is a natural correspondence between subsets of W and equivalence classes. 

Thus rather than list all the equivalence classes in which a believes, we can list the corresponding subsets of 

W (which are the intensions of the equivalence classes}. That is, we can say that an agent's belief is a set of 

propositions, where a proposition is a set of worlds. 

This motivates the following definition. We assume a set P of atomic propositions and a set A of 

agents. A belief structure is a triple M=(W,N,H),  where W is a nonempty set, which we take to be the set of 

possible worlds, I I : P - . 2  w gives the intensions of the atomic propositions, and N : A ×  W~22W assigns to every 

agent the set of propositions in which the agent believes in any world. 1 

The language L is the smallest set that contains P ,  is closed under Boolean connectives and contains B~b 

We now can define what it means for a world w in M to ("a believes that ~") if ¢ is in L and a is in A. 

satisfy formulas. 

O 

O 

o 

® 

M,w~p, where PEP, if ~ I I (p ) .  

M, w~-~b if M, wl~.q~. 

if M,w ¢ and 

M,w~B,~ if {u : M,u~¢}EN(a,w) (that is, B ~  is satisfied in w if the intension of ¢ is among the propo- 

sitions that a believes in w). 

What we have described so far is essentially Montague's intensional logic of belief [Mo70 I. We find it, 

however, quite unsatisfying, for two reasons. First, this approach leaves the notion of a possible world as a 

primitive notion, and it does not gives us any intuition about the nature of these worlds. While this might be 

1 If there is only one agent then Ncan  be taken as a function N:W~22v~ Such structures are called in the literature neighborhood 
structures [Se72] or minimal structures [Ch80]. They were introduced for technical reasons, which are unrelated to epistemic logic, by 
Montague [Mo68], who used them to interpret his pragmatic language, and Scott [Sc70]. 
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seen as an advantage by the logician whose interest is in epistemic logic, it is a disadvantage for the "user" of 

epistemic logic whose interest is mostly in using the framework to model belief states. One might say that 

belief structure are models for epistemic logic and not for epistemic notions. For a further elaboration of this 

point see [FHV84,FV85]. Secondly, since the above approach does not elaborate on the issue of the nature of 

the possible worlds, it also leaves open the question of where one gets the set W of  possible worlds in the first 

place. Note that the choice of W is quite significant, since it determines the relation of semantical 

equivalence, which we want to make as weak as possible. In the next section we describe another approach 

towards modelling belief in propositions. 

3. Bel ief  W o r l d s  

In this section we define belief worlds constructively. This enables us to take W to be the set of all pos- 

sible worlds. As a result, the relation of semantical equivalence will be as weak as it can be, i.e., it will be the 

relation of logical equivalence. 

Basically, a world consists of a truth assignment to the atomic propositions and a collection of sets of 

worlds. This is, of course, a circular definition, and to make it meaningful we follow the methodology used in 

[FHV84, FV84, Va85], and define worlds inductively according to their depth. 2 A world of depth 0 is a truth 

assignment to the atomic propositions; a world of depth I is essentially a collection of sets of worlds of depth 

0; a world of depth 2 is essentially a collection of sets of worlds of depth 1; etc. This process can be carried 

out to the limit, giving us worlds of infinite depth. 

Formally, we define a Oth-order ass ignment ,  fo, to be a truth assignment f0:P--,{0,1} to the atomic pro.. 

positions. We call < f 0 >  a l - a r y  world  (since its "length" is 1). Assume inductively that k-airy worlds 

<f0, • • • ,f#-l> have been defined. Let Wk be the set of all k-ary worlds. A k th-order  a s s ignmen t  is a func- 

2wt tion fk:A--~2 . Intuitively, fk associates with each agent a set of propositions, where each proposition is a se t  

of k-ary worlds. There is a "compatibili ty" restriction on fk's, which we shall discuss shortly. We call 

<fo,  • • • , f k >  a ( k + l ) - a r y  world. A n  infinite sequence <fo, f l , f2 , . . .> ,  where each pre f i z  <fo ,  • • • , f ~ t >  is a k- 

ary world, is called an in f in i tary  world, to distinguish it from f in l tary  worlds. W~ is the set of infinitary 

worlds (there are uncountably many of them}, and W is the set of all worlds. 

The restriction that we mentioned earlier ensures that each level extends the preceding levels. That is, 

if we take the propositions in the (k+l)st  level, and chop off their kth level, we should get the propositions of 

the kth level. To define this restriction formally, we need the following definition. Let X C  Wk. Then chop(X) 

is the set of worlds obtained by chopping off the last level in the worlds in X, that is, 

,/k-2> : < f o , . . .  

W e  can now state the restriction as: 

chop(X) : Xe.f a)} 

In [FHV84, FV84, Va85] this methodology is used to model epistemic notions in the aforementioned Hintikka style. 
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The reader might  be annoyed by the fact tha t  we can carry our construction to the limit, assuming 

somehow an infinite amount  of information. Nevertheless, in the next section we shall see tha t  infinitary 

worlds can arise naturally.  

We now define what  it means for a finitary belief world to satisfy a formula of L. 

* <f0, • • • , f r > ~ P ,  where p is a atomic proposition, if f0(p)~-l. 

* < f o ,  • . .  ,fr> ~ ' ~  if < f o ,  • . "  ,fr> ~-~b. 

e < f o , . . .  , f , > ~ / \ ¢  if < f o , .  • • , f , > ~  and <fo, . .  • , f r > ~ ¢ .  

e <f0, • • • ,f~>~Ba~b if r > l  and {w: wEWr and w~¢}CA(a) (in particular, <f0>~:i~Ba~b.) 

Since in our belief worlds higher levels always extend lower levels, to determine satisfaction it suffices to 

consider a long enough prefix. To formalize this s tatement  we need to define depth of formulas, which is intui- 

tively the depth of nesting of belief modalities. 

. depth(p)=O, ff p is atomic propositions. 

. depth(-~¢)--- depth(C). 

, d e p t h ( c k / \ ¢ ) = m a z { d e p t h ( ¢ ) , d e p t h ( ¢ ) } .  

. dep th (Ba(¢) )=l+dep th (O) .  

L e m m a  1: Assume tha t  depth(¢)-~-k and r ~ k .  Then <fo, • • • , f r > ~ ¢  iff <fo,  . • • , f k > ~ q  i. [] 

Note, however, that  the satisfaction relation is defined between all worlds and all formulas, regardless of the 

arity of the worlds and the depth of the formulas. The reader who is familiar with [FLIV84, FV85, Va85] 

should note the difference in the methodology here and in those papers. Here we consider both finitary worlds 

and infinitary worlds to be full-fledged objects, while in the aforementioned papers finitary worlds are merely 

building blocks of infinitary worlds. 

We can now define satisfaction for infinitary worlds. We say tha t  the infinitary world w-~ <fo,fl ,  " " " > 

satisfies ~b, wri t ten w ~ b ,  if <f0, . . .  , f k > ~ b ,  where lk=depth(~)). This is a reasonable definition, since if 

wl = < f 0 ,  - • • , f r> is an arbitrary prefix of w such tha t  r > k ,  it then follows from Lemma 1 tha t  w ~ b  iff 

We now want  to show tha t  worlds can be extended conservatively,  i.e., without  changing the agents' 

beliefs. Let  us say that  two worlds w I and w 2 are equivalent, denoted wl~_ w2, if they satisfy exactly the same 

formulas, i.e., if w l ~ ¢  if and only if w2~¢,  for all formulas ¢ in L. 

T h e o r e m  2 :  For every k-ary world w = < f o  , . . . , f ~ l >  there is a (k+l) -ary  world v/ ~-<fo ,  • • • , f~l , fk>,  

such tha t  w~. u/ . Furthermore,  for every k-ary world w - ~ < f o , . . .  , f ~ l >  there is an infinitary world 

u/ = < f 0 ,  • • • , f~l , f~ " " " > ,  such that  w ~  v/ . [1 

(This theorem does not have an analogue in [FHV84, FV85, Va85], since there the satisfaction relation 

between worlds and formulas is a partial relation.) 

A formula ¢ is valid if it is satisfied by all belief worlds. Clearly if dep th (¢ )=k ,  then it suffices to con- 

sider (k+l)-ary  worlds. Since only finitely many worlds need be considered, we get: 
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Theorem 3: The validity problem for belief worlds is decidable. [] 

We can also axiomatize validity in the following way: 

Theorem 4: The following formal system is sound and complete for validity in belief worlds: 

(A1) All substitution instances of propositional tautologies. 

(R1) From ¢~ ~ infer B~¢~. B,~. [] 

Thus validity is fully characterized by propositional reasoning plus substitutivity of equivalents. It follows 

that the logic of belief worlds is the generalization of the modal logic E [Ch8O] to include multiple modalities. 

We can now relate belief worlds, as defined in this section, to belief structures, as defined in the previous 

section. Intuitively, what we want to do is to construct a belief structure M so that the worlds in that struc- 

ture will correspond to belief worlds. The natural choice for the set of possible worlds in M is, of course, the 

set W of all belief worlds. By Theorem 2, we can restrict ourselves, without loss of generality, to W~, the set 

of infinitary worlds. Also, it is easy to define the interpretation for atomic propositions. The nontrivial part 

is to define N. To do this we need some definitions. 

Let XC W~ be a set of infinitary worlds. Then prefixk(.X) is the set of k-ary worlds that are prefixes of 
worlds in X. That is, prefixk(X) is the set 

{<f0,... ,f~1~ > : <f0,.-. ,f~-1,ffk,''" >eX~ 

Let w:.<fo,.fl,...>EW~, and aEA. We define Na(w ) as the collection 

{X: X C W~ and pre/izt(X)~_f~a),for all k~_0}. 

We can now define the desired belief structure. 

Theorem 5: Let Mb~(W~,N, II) be a belief structure, where W~ is the set of all infinitary worlds, 

II(p)={w : w~p} for pEP, and N(a,w)----Na(w). Then M,f~ if and only if f~, for all formulas ~ of L. [] 

Thus our approach has lead us to select a particular belief structure as the standard one, in the sense that for 

this structure semantical equivalence and logical equivalence are identical. 

Theorem 5 claims that there is a belief structure that model the collection of all belief worlds. Thus 

belief structures are as expressive as belief worlds. One may suspect, however, that belief worlds are not as 

expressive as belief structures. The reason for this suspicion is as follows. The semantics of a possible world 

w in a belief structure M-~(W,N, II) depends on three parameters: (a) the atomic propositions that are true in 

w, (b) N(a,w) for each agent a, and (c) the set IV. The set Wis the contezt in which the agents operate [Cr73, 
Mo70, St80]; it is the set of possibilities that it is the point of the discourse to distinguish between; it is the set 

of possibilities that are compatible with the agents' constraints [BP83]. The presence of context is what 

makes belief structure adequate to interpret pragmatic languages [Moil8]. ~ Belief worlds, on the other hand, 
seem not to have any notion of variable context. Put differently, belief worlds have a standard fixed context - 

S According to Morris [Mo38], pragmatlcs is concerned with relations between linguistic expressions, the objects to which they refer, 
and the contexts of use of the expressions. The other two branches in the study of language are syntaz, which is concerned with relations 
among linguistic expressions, and semantics, which is concerned with relations between expressions and the object to which they refer. 
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the set W. Thus it seems that in our effort to find a standard context we have lost the ability to model all 

other contexts. Surprisingly, this is not the case! 

T h e o r e m  6. Let M~-(W,N, II) be a belief structure, and let wE W. Then there is a belief world f~ such that 

M,w~¢ if and only if fw~¢,  for all formulas ¢ of L. [] 

Theorem 6 is superficially similar to certain theorems in [FHV$4, FV85, Va85], but  its proof is quite different. 

The difference stems from the fact that the theorems in those papers deal with Kripke semantics that does not 

have the context component that Montague semantics (or rather pragmatics) has. 

4. Reason ing  

The agents in our model have very little reasoning power. This is clearly demonstrated by the fact that 

the formulas B~/\B,¢ and B ~ ¢ / \ ¢ )  are incomparable, i.e., either of them can be satisfied in some belief 

world w, while the other is not satisfied in w. Suppose now that we do want to endow the agents with some 

reasoning power (which is probably the case if the agents we have in mind are supposed to have some intelli- 

gence). Here is a sample of formulas that we may want to be valid in our models: 

(B1) ~BSa l se  

(B2) B~true. 

(B3) B~¢/\¢)DB~b. 

(B4) Bgh/\B,¢DB~(¢/\¢). 

Let us see now what conditions we have to put on belief structures to capture these modes of reasoning. It 

turns out that B1-B4 can be captured by imposing certain algebraic restrictions on belief worlds 

< k , . . . , h " ' > .  
Consider first B1 and B2. The intension of false is the empty set, so to ensure that agents do not have 

false beliefs, we require that 0~.f~a), for all k > l .  The intension of t r u e  is the set of all worlds, so to ensure 

that agents believe in true things, we require that W~aEffk(a), for all k > l .  Note though that if a does not 

believe that false, then she does not believe any contradictory formula. Similarly, if a believes that true, 

then she believes all valid formulas. 

Consider now B3 and B4. We know that the intension of $ / \ ¢  is the intersection of the intensions of 

and ¢. Thus to capture B3 we require that if XC YC W~ and XEf~a), then also YEfk(a), for all k>l, and to 

capture B4 we require that whenever X, YEfk(a) then also (Xn Y)E.f//(a), for all k > l .  

Note that B3 and B4 characterize completely different modes of reasoning. B3 characterizes drawing 

conclusion from individual facts one believes in, while B4 characterizes putting these facts together. If a 

believes that p when she thinks that the probability that p is true is very high, then a may employ B3 but not 

B4. The rationale for that is that if ¢/ \g,  is very probable, then so are ~b and 0, but  if ~b and ¢ are very prob- 

able, it does not necessarily entail that ~b/\,¢ is very probable. (This explains the lottery paradox [Ky61]. One 

can believe for every particular lottery ticket holder x that x will not win the lottery, while still believing that 

someone will win the lottery.) We come back to this mode of reasoning in the next section. 

Consider now reasoning that agents can do that involves introspection rather than deduction. Introspec- 

tion about one's own beliefs can take two forms: 
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(m) B,,¢ 

(B6) 

In B5 agents are aware of their beliefs and in B6 they are aware of their doubts. For a discussion of epistemic 

introspection see [Le78]. The conditions needed to capture B5 and B6 are less intuitive than the restriction 

needed to capture BI-B4. To capture B5 we require that for all k_~l if XEfk(a), then 

{ < g o , . . - , g k >  :XEgk(a)}Ch+l(a) . To capture B6 we require that for a l l  k_~l if X~fk(a), then 

{ < g o , - - .  ,gk ~> : X~ga(a)}efk+l(a) • 

The restrictions that capture B5 and B6 have the significant consequence that they force the worlds to 

be infinitary. In other words, in finitary worlds agents do not have unlimited introspection, since introspec- 

tion, by its reflexive nature, generates arbitrarily deep beliefs. 

Finally, we mention how to modify belief worlds to obtain knowledge worlds. There is a general agree- 

ment that one property that  distinguishes knowledge from belief is that the former is by definition correct. 

That is, if an agent knows that ¢, then ~b must be true; otherwise we would not have said that the agents 

know that 4', but  rather we would have said that the agent believes that ~b. It is not hard to see that in order 

to capture this property we have to require that <f0, • . • ,f~_i>CX for all XCfk(a) . 

5. Models for Local Reasoning 

It is well known that neighborhood semantics is more expressive than Kripke semantics. To further 

demonstrate the power of our approach we compare it here to models for belief with a particular mode of rea- 

soning. We show that belief worlds can emulate two variants of Kripke structures. 

In the previous section we saw different modes of reasoning that agents may employ. Let us consider 

again the reasoning characterized by B1, B2, and B3. The interpretation that we gave to that mode of rea- 

soning was that a believe that ¢ if she thinks the the probability that ~ is true is very high. Another possible 

interpretation is that agents have multiple "frame of minds" or "dispositions". Thus, a may believe that ~ in 

one frame of mind, and she may believe that ¢ in another frame of mind, but she never puts ¢ and ¢ together 

to infer that ~/\¢. This mode of reasoning, which we call local reasoning following [FH85], has been con- 

sidered by several authors [FH85, Le85, RB79, St85, Za85], who modelled it by different variants of Hintikka 

semantics. Our aim in this section is to show that our models and the models studied in the aforementioned 

papers are essentially equivalent. 

The model that we have for local reasoning is belief worlds <fo, - • • ,fk ' ' " > that satisfy the following 

constraints, for all sEA and k~ I: 

" eLk(a). 

• W~_IEI~a ). 

o If XC YC W~.l and XEf~a), then YEf~a). 

We call these worlds belief worlds for local reasoning or, for short, LR belief worlds. We now describe two 

other approaches to modelling local reasoning that have been suggested in the literature. 

Several authors have suggested modelling local reasoning by the following variant of Hintikka semantics. 

In Hintikka semantics each agents has a set of worlds that are thought as possible alternative. In the 
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suggested variant, each agent has a collection of sets of worlds, where each set constitutes the alternatives in 

one flame of mind [FH85, Le85, St85, Za85]. An agent a believes that ¢ if ¢ is true in all alternatives in sorae 

frame of mind of A. Formally, an FHLSZ belief structure is a belief structure, i.e, it is a triple M-~-(W,N~II)~ 

where Wis a nonempty set of worlds, II:P--~2 W, and N:AX W--~22W. Here we interpret N an an assignment to 

agents of collection of sets of alternatives. 

satisfaction is also different. 

® 

® 

Because we interpret N differently from before, the definition of 

M,w~p, where pEP, if wEII(P). 

M,w~-~¢ if M,w~¢. 

M,w~q~/\¢ if M , w ~  and M,w~¢. 

M,w~B~q~ if for some UEN(a,w) we have that M , u ~ ¢  for all uEU. 

Note that,  even though FHLSZ belief structures look like belief structures, their semantics is closer to Kripke 

semantics than to Montague semantics. 

Rescher and Brandon have suggested using non-standard possible worlds to model local reasoning 

[RB79]. Non-standard worlds are built from other worlds by two operations: schematization and superposi. 
tion. The schematization operation combines worlds conjunctively. Thus, p holds i n t h e  schematization of u 

and v, denoted u fqv, if p holds both in u and v. The superposition operation combines worlds disjunctively. 

Thus, p holds in the superposition of u and v, denoted u U v, if p holds in either u or v. Note that  conjunctive 

worlds can be fuzzy, we can have that  neither p nor -~p holds in u fqv, while disjunctive worlds can be over 

determined, we can have that both p and -~p hold in u U v. We now proceed with formal definitions. 

Let W be a set of worlds. We define the class of non-standard possible worlds expressions (expressions, 

for short) as the smallest class E that is closed under the following closure conditions: 

• WCE. 

• If w,EE for all i in an index set I, then n w,EE. 

• If w,EE for all i in an index set I, then t9 w,EE. 

We now define non-standard (NS) belief structures. (Note: NS belief structures have not been defined in 

[RB79]. Our treatment, however, is based on ideas from [RB79].) An NS belief structure is a triple 

M=(W,N,H), where W is a nonempty set, H : P ~ 2  W, and N:A× W ~ E .  Here N assigns to each agent a non- 

standard world that the agent believes is the actual world. The divergence from Hintikka semantics is that 

there are no alternative worlds here. Rather, the agent believes that she exists in some particular world, 

albeit a non-standard one. 

Satisfaction of formulas in worlds is defined as follows. 

® M,w~p, where pEP, if wEH(P). 

• M , w ~ ¢  if M,w~¢. 

• M,w~¢/ \¢  if  M,w~¢ and M,w~¢. 

• If N(a,w)= f~w;, then M,w~B~,¢ if M,w;~¢ for all iEI. 
¢E1 
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• If N(a,w)~ Uwi, then M,w~Ba¢ if M , w ~ b  for some iE/. 

Our main result in this section is that the three approaches to local reasoning that we have described 

above, which seem on the surface to be rather different, are essentially equivalent. 

T h e o r e m  7. 

(1) Let f be an LR belief world. Then there is an FHLSZ belief structure M and a world w in M such that 

f ~ ¢  if and only if M,w~¢ for all formulas ¢ of L. 

(2) Let M be an FHLSZ belief structure, and let w be a world in M. Then there is an NS belief world N 

and a world u in Nsuch  that  such that M , w ~  if and only if N , u ~ ¢  for all formulas ¢ of L. 

(3} Let M be an NS belief structure, and let w be a world in M. Then there is an LR belief world f such 

that such that M , w ~  if and only if f ~ b  for all formulas ~ of L. [t 

6. Concluding Remarks 

We have presented a framework in which epistemic notions are modelled by sets of propositions, where 

propositions are sets of possible worlds, and have shown how notions such as reasoning and context of use can 

be incorporated in the framework. We have also demonstrated the power of our approach by showing how we 

can emulate in it other epistemic models. Our framework alleviates the logical omniscience problem, but does 

not solve it completely - we still have substitutivity of equivalents in epistemic contexts. We now suggest two 

lines of possible attack on the problem. 

First, one can try to incorporate the nonclassical worlds approach with our approach (cL [CrT0, Cr72, 

RB79 D. As we have argued before, this cannot solve the problem, but merely changes the standard logical 

system into a nonstandard one. An weakening of the logical system might, however, be desirable. 

Alternatively, one can accept the fact the epistemic notions are not purely intensional. Rather than dis- 

card all semantics and embrace fully the aforementioned syntactic approach, one can try to inject small doses 

of syntax into the semantics (cf. [Cr75, FH85, Ra82]}. 

A c k n o w l e d g e m e n t s .  Par t  of this research was done while I was visiting the Center for Study of Language 

and Information at Stanford University with support from the System Development Foundation. I was 
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